If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
4 | 1-2 |
GENETICS
|
First law of heredity.
Monohybrid inheritance. |
By the end of the
lesson, the learner
should be able to:
Describe Mendel?s experiments. State Mendel?s first law. Define monohybrid inheritance. Differentiate between genotype and phenotype. Draw diagrams to show genetic crosses. |
Exposition with explanations.
Q/A to review Mendel?s first law. Drawing diagrams to show genetic crosses. Discussion with probing questions. |
text book |
KLB BK IV. PP 11-12
KLB BK IV. PP 12-14 |
|
4 | 3 |
GENETICS
|
Monohybrid inheritance.
|
By the end of the
lesson, the learner
should be able to:
Define monohybrid inheritance. Differentiate between genotype and phenotype. Draw diagrams to show genetic crosses. |
Q/A to review Mendel?s first law.
Drawing diagrams to show genetic crosses. Discussion with probing questions. |
text book
|
KLB BK IV. PP 12-14
|
|
4 | 4 |
GENETICS
|
Genetic crosses using a punnet square.
|
By the end of the
lesson, the learner
should be able to:
Show fusion of gametes using a punnet square. |
Completing a punnet square;
Brief discussion. |
text book
|
KLB BK IV. PP 14-15
|
|
4 | 5 |
GENETICS
|
Genetic crosses using a punnet square.
|
By the end of the
lesson, the learner
should be able to:
Show fusion of gametes using a punnet square. |
Completing a punnet square;
Brief discussion. |
text book
|
KLB BK IV. PP 14-15
|
|
5 | 1-2 |
GENETICS
|
Ratios of phenotypes and genotypes.
|
By the end of the
lesson, the learner
should be able to:
Explain the concept of probability in inheritance of characteristics. |
Q/A to review phenotypes and genotypes.
Simple experiments on probability. Discussion. |
Beans of two different colours, beakers.
|
KLB BK IV. PP 15-17
|
|
5 | 3 |
GENETICS
|
Ratios of phenotypes and genotypes.
|
By the end of the
lesson, the learner
should be able to:
Explain the concept of probability in inheritance of characteristics. |
Q/A to review phenotypes and genotypes.
Simple experiments on probability. Discussion. |
Beans of two different colours, beakers.
|
KLB BK IV. PP 15-17
|
|
5 | 4 |
GENETICS
|
Incomplete dominance.
|
By the end of the
lesson, the learner
should be able to:
Cite examples of incomplete dominance. Illustrate incomplete dominance with diagrams. |
Exposition;
Discussion; Drawing diagrams. |
chart
|
KLB BK IV. PP 19-20.
|
|
5 | 5 |
GENETICS
|
Incomplete dominance.
|
By the end of the
lesson, the learner
should be able to:
Cite examples of incomplete dominance. Illustrate incomplete dominance with diagrams. |
Exposition;
Discussion; Drawing diagrams. |
chart
|
KLB BK IV. PP 19-20.
|
|
6 | 1-2 |
GENETICS
|
Inheritance of ABO blood groups.
Inheritance of Rhesus factor. |
By the end of the
lesson, the learner
should be able to:
Illustrate inheritance of blood groups with diagrams. Describe inheritance of Rhesus factor. |
Exposition;
Discussion; Drawing diagrams; Supervised practice on inheritance of blood groups. Exposition; Discussion. |
chart
|
KLB BK IV. PP 20-21
KLB BK IV. PP 21-22 |
|
6 | 3 |
GENETICS
|
Inheritance of Rhesus factor.
|
By the end of the
lesson, the learner
should be able to:
Describe inheritance of Rhesus factor. |
Exposition;
Discussion. |
chart
|
KLB BK IV. PP 21-22
|
|
6 | 4 |
GENETICS
|
Determining unknown genotypes.
|
By the end of the
lesson, the learner
should be able to:
Determine unknown genotypes using test crosses and selfing crosses. |
Exposition;
Probing questions; Drawing illustrative diagrams; Discussion. |
text book
|
KLB BK IV. PP 22-23
|
|
6 | 5 |
GENETICS
|
Determining unknown genotypes.
|
By the end of the
lesson, the learner
should be able to:
Determine unknown genotypes using test crosses and selfing crosses. |
Exposition;
Probing questions; Drawing illustrative diagrams; Discussion. |
text book
|
KLB BK IV. PP 22-23
|
|
7 | 1-2 |
GENETICS
|
Sex determination in man.
Sex-linked genes and traits. |
By the end of the
lesson, the learner
should be able to:
Describe sex determination in man. Identify sex-linked traits in man. Illustrate inheritance of sex-linked traits with diagrams. |
Exposition;
Drawing illustrative diagrams; Discussion. Probing questions; Drawing illustrative diagrams; Discussion. |
text book |
KLB BK IV. PP 23-24
KLB BK IV. PP 24-27 |
|
7 | 3 |
GENETICS
|
Sex-linked genes and traits.
|
By the end of the
lesson, the learner
should be able to:
Identify sex-linked traits in man. Illustrate inheritance of sex-linked traits with diagrams. |
Probing questions;
Drawing illustrative diagrams; Discussion. |
text book
|
KLB BK IV. PP 24-27
|
|
7 | 4 |
GENETICS
|
Non-disjunction.
|
By the end of the
lesson, the learner
should be able to:
Explain effects of non-disjunction as a chromosomal abnormality. |
Exposition of new concepts;
Discussion. |
text book
|
KLB BK IV. PP 30-33
|
|
7 | 4-5 |
GENETICS
|
Non-disjunction.
|
By the end of the
lesson, the learner
should be able to:
Explain effects of non-disjunction as a chromosomal abnormality. |
Exposition of new concepts;
Discussion. |
text book
|
KLB BK IV. PP 30-33
|
|
8 |
Midterm break |
|||||||
9 | 1-2 |
GENETICS
|
Gene mutation.
|
By the end of the
lesson, the learner
should be able to:
Differentiate between chromosomal and gene mutation. Identify types of gene mutation. |
Q/A to review types of chromosomal mutation;
Using sequence models to show chromosomal mutations. Discussion. |
Models to show Chromosomal mutations.
|
KLB BK IV. PP 33-35
|
|
9 | 3 |
GENETICS
|
Gene mutation.
|
By the end of the
lesson, the learner
should be able to:
Differentiate between chromosomal and gene mutation. Identify types of gene mutation. |
Q/A to review types of chromosomal mutation;
Using sequence models to show chromosomal mutations. Discussion. |
Models to show Chromosomal mutations.
|
KLB BK IV. PP 33-35
|
|
9 | 4 |
GENETICS
|
Disorders due to gene mutations.
|
By the end of the
lesson, the learner
should be able to:
Illustrate genetic disorders with diagrams. |
Discussion on albinism, sickle-cell anaemia, haemophilia, colour blindness.
Drawing illustrative diagrams. |
chart
|
KLB BK IV. PP 35-38
|
|
9 | 5 |
GENETICS
|
Disorders due to gene mutations.
|
By the end of the
lesson, the learner
should be able to:
Illustrate genetic disorders with diagrams. |
Discussion on albinism, sickle-cell anaemia, haemophilia, colour blindness.
Drawing illustrative diagrams. |
chart
|
KLB BK IV. PP 35-38
|
|
10 | 1-2 |
GENETICS
|
Applications of genetics.
|
By the end of the
lesson, the learner
should be able to:
Identify areas of practical application of genetics. |
Probing questions;
Open discussion; Topic review. |
text book,video
|
KLB BK IV. PP 39-45
|
|
10 | 3 |
EVOLUTION
|
Meaning of evolution.
Theories of origin of life.
|
By the end of the
lesson, the learner
should be able to:
Define evolution. Explain the theories of life. |
Brain storming; Probing questions; Q/A on creation theory; Exposition of chemical theory. |
text book
|
KLB BK IV. PP 49-51
|
|
10 | 4 |
EVOLUTION
|
Meaning of evolution.
Theories of origin of life.
|
By the end of the
lesson, the learner
should be able to:
Define evolution. Explain the theories of life. |
Brain storming; Probing questions; Q/A on creation theory; Exposition of chemical theory. |
text book
|
KLB BK IV. PP 49-51
|
|
10 | 5 |
EVOLUTION
|
Evidence for organic evolution.
|
By the end of the
lesson, the learner
should be able to:
Cite evidence for organic evolution. |
Brain storming;
Probing questions; Exposition; Discussion. |
text book
|
KLB BK IV. PP 51-59
|
|
11 | 1-2 |
EVOLUTION
|
Comparative anatomy and homologous structures.
|
By the end of the
lesson, the learner
should be able to:
Define divergent evolution. Give examples of homologous structures. |
Examine forelimbs of vertebrates;
Discuss adaptations and use of the limbs. |
Forelimbs of vertebrates.
|
KLB BK IV. PP 59-63
|
|
11 | 3 |
EVOLUTION
|
Comparative anatomy and homologous structures.
|
By the end of the
lesson, the learner
should be able to:
Define divergent evolution. Give examples of homologous structures. |
Examine forelimbs of vertebrates;
Discuss adaptations and use of the limbs. |
Forelimbs of vertebrates.
|
KLB BK IV. PP 59-63
|
|
11 | 4 |
EVOLUTION
|
Comparative anatomy and homologous structures. (contd)
|
By the end of the
lesson, the learner
should be able to:
Define divergent evolution. Give examples of homologous structures. |
Examine forelimbs of vertebrates;
Discuss adaptations and use of the limbs. |
Forelimbs of vertebrates.
|
KLB BK IV. PP 59-63
|
|
11 | 5 |
EVOLUTION
|
Convergent evolution and analogous structures.
|
By the end of the
lesson, the learner
should be able to:
Define convergent evolution. Give examples of analogous structures. Give examples of vestigial structures. |
Examine wings of insects; wings of birds / bat.
Discuss observations. |
Wings of insects, wings of birds / bat.
|
KLB BK IV. PP 63-64
|
|
12 | 1-2 |
EVOLUTION
|
Convergent evolution and analogous structures.(contd)
|
By the end of the
lesson, the learner
should be able to:
Define convergent evolution. Give examples of analogous structures. Give examples of vestigial structures. |
Examine wings of insects; wings of birds / bat.
Discuss observations. |
Wings of insects, wings of birds / bat.
|
KLB BK IV. PP 63-64
|
|
12 | 3 |
EVOLUTION
|
Convergent evolution and analogous structures.(contd)
|
By the end of the
lesson, the learner
should be able to:
Define convergent evolution. Give examples of analogous structures. Give examples of vestigial structures. |
Examine wings of insects; wings of birds / bat.
Discuss observations. |
Wings of insects, wings of birds / bat.
|
KLB BK IV. PP 63-64
|
|
12 | 4 |
EVOLUTION
|
Larmack?s theory of evolution.
|
By the end of the
lesson, the learner
should be able to:
Explain Larmack?s theory of evolution. |
Expositions and explanations.
|
text book
|
KLB BK IV. P 67
|
|
12 | 5 |
EVOLUTION
|
Darwin?s theory of natural selection.
|
By the end of the
lesson, the learner
should be able to:
Explain Darwin?s theory of natural selection. Cite examples of natural selection in action. |
Expositions and explanations;
Probing questions; Topic review. |
text book
|
KLB BK IV. PP 67-72
|
Your Name Comes Here