Home






SCHEME OF WORK
Chemistry
Form 2 2025
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

Revision

2 1
WATER AND HYDROGEN
Burning candle wax in air.
Reaction of cold water with metals.
By the end of the lesson, the learner should be able to:
Test for the products of burning candle wax in air.
Identify products of reaction of cold water with metals.
Teacher demonstrations;
Discussion.
Discussion;
Write equations.
Candles, lime water.
Calcium, sodium grain.



K.L.B.
BOOK I
PP. 91-92
2 2
WATER AND HYDROGEN
Reaction of steam with metals.
By the end of the lesson, the learner should be able to:
Identify products of reaction of steam with metals.
Recall the reactivity series of metals based on reaction with water.

Teacher demonstrations;
Test for evolved gas;
Discussion;
Write equations.
Review reactivity series.

Magnesium ribbon, sand, iron / steel wool.
K.L.B.
BOOK I
PP. 94-96
2 3
WATER AND HYDROGEN
Hydrogen. - lab preparation.
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen.
Teacher demonstrations;
Discussion.
Zinc granules,
dil HCl,
conc. sulphuric acid.
K.L.B.
BOOK I
P. 97
2 4-5
WATER AND HYDROGEN
Hydrogen. - physical properties.
Hydrogen as a reducing agent.
Burning hydrogen in air.
By the end of the lesson, the learner should be able to:
State physical properties of hydrogen.
Describe an experiment to show reducing properties of hydrogen.
Identify products of burning hydrogen in air.
Probing questions and discussion.
Teacher demonstration;
Discussion;
Write equations.
Discussion.
Zinc granules,
dil HCl,
conc. sulphuric acid, litmus papers.
Copper (II) oxide, anhydrous Copper (II) sulphate., dry hydrogen.
Anhydrous calcium chloride,
hydrogen, U tube, ice cold water.
K.L.B.
BOOK I
PP. 97-98
K.L.B.
BOOK I
PP. 99-101
3 1
WATER AND HYDROGEN
Uses of hydrogen.
By the end of the lesson, the learner should be able to:
State uses of hydrogen.
Probing questions;
Open discussion.
TEXT BOOK
K.L.B.
BOOK I
PP. 102-103
3 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Atomic and mass numbers.
By the end of the lesson, the learner should be able to:


Name the subatomic particles in an atom.
Define atomic number and mass number of an atom.
Represent atomic and mass numbers symbolically.
Exposition on new concepts;
Probing questions;
Brief discussion.
text book
K.L.B.
BOOK II

PP. 1-3
3 3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
First twenty elements of the periodic table.
Isotopes.
By the end of the lesson, the learner should be able to:
List the first twenty elements of the periodic table.
Write chemical symbols of the first twenty elements of the periodic table.
Define isotopes.
Give examples of isotopes.
Expository approach: referring to the periodic table, teacher exposes the first twenty elements.
Writing down a list of first twenty elements of the periodic table.
Exposition of definition and examples of isotopes.
Giving examples of isotopes.
Periodic table.
K.L.B.
BOOK II

PP. 1-3
3 4-5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration.
Electronic configuration in diagrams.
By the end of the lesson, the learner should be able to:
Represent isotopes symbolically.
Define an energy level.
Describe electronic configuration in an atom.
Represent electronic configuration diagrammatically.
Exposition ? teacher exposes new concepts about electronic configuration.
Written exercise.
Supervised practice;
Written exercise.
Periodic table.

text book
K.L.B.
BOOK II
P. 4





PP. 5-9
K.L.B.
BOOK II
PP. 5-8
4

Cats

5 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Periods of the periodic table.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Exposition ? Definition of a period.
Q/A: Examples of elements of the same period.
Periodic table.
K.L.B. BOOK IIP. 9
5 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Groups of the periodic table.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Exposition ? definition of a group.
Q/A: examples of elements of the same group.
Periodic table.
K.L.B. BOOK IIP. 9
5 3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
R.M.M. and isotopes.
By the end of the lesson, the learner should be able to:
Calculate R.M.M. from isotopic composition.
Supervised practice involving calculation of RMM from isotopic composition.
text book
K.L.B. BOOK IIPP. 11-13
5 4-5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Positive ions and ion formation.
Positive ions representation.
By the end of the lesson, the learner should be able to:
To define an ion and a cation.

To represent formation of positive ions symbolically.
Teacher gives examples of stable atoms.
Guided discovery that metals need to lose one, two or three electrons to attain stability.
Examples of positive ions.


Diagrammatic representation of cations.
text book
Chart  ion model.
K.L.B. BOOK IIPP 14-15
K.L.B. BOOK IIP 16
6 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Negative ions and ion formation.
By the end of the lesson, the learner should be able to:
To define an anion.
To describe formation of negative ions symbolically.
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions.
Diagrammatic representation of anions.
Chart  ion model.
K.L.B. BOOK IIP 17
6 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Negative ions and ion formation.
By the end of the lesson, the learner should be able to:
To define an anion.
To describe formation of negative ions symbolically.
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions.
Diagrammatic representation of anions.
Chart  ion model.
K.L.B. BOOK IIP 17
6 3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Negative ions and ion formation.
By the end of the lesson, the learner should be able to:
To define an anion.
To describe formation of negative ions symbolically.
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions.
Diagrammatic representation of anions.
Chart  ion model.
K.L.B. BOOK IIP 17
6 4-5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencies of metals.
Valencie of non-metals.
By the end of the lesson, the learner should be able to:
Recall valencies of metals among the first twenty elements in the periodic table.
Recall valencies of non-metals among the first twenty elements in the periodic table.
Q/A to review previous lesson;
Exposition;
Guided discovery.
Periodic table.
K.L.B. BOOK IIP 17
7 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencies of radicals.
By the end of the lesson, the learner should be able to:
Define a radical.
Recall the valencies of common radicals.
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies.
text book
K.L.B. BOOK IIP 18
7 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencies of radicals.
By the end of the lesson, the learner should be able to:
Define a radical.
Recall the valencies of common radicals.
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies.
text book
K.L.B. BOOK IIP 18
7 3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Oxidation number.
By the end of the lesson, the learner should be able to:
Define oxidation number.
Predict oxidation numbers from position of elements in the periodic table.
Q/A: Valencies.
Expose oxidation numbers of common ions.
Students complete a table of ions and their oxidation numbers.
The periodic table.
K.L.B. BOOK IIvP 18
7 4-5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration, ion formed, valency and oxidation number
Chemical formulae of compounds. - Elements of equal valencies.
By the end of the lesson, the learner should be able to:
Relate electronic configuration, ion formed, valency and oxidation number of different elements.
To derive the formulae of some compounds involving elements of equal valencies.
Written exercise;
Exercise review.
Discuss formation of compounds such as NaCl, MgO.
text book
K.L.B. BOOK IIP 18
K.L.B. BOOK IIPP 19-20
8

Midterm exam and midterm break

9 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of unequal valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of unequal valencies.
Discuss formation of compounds such as MgCl2
Al (NO3)3
text book
K.L.B. BOOK IIPP 19-20
9 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of unequal valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of unequal valencies.
Discuss formation of compounds such as MgCl2
Al (NO3)3
text book
K.L.B. BOOK IIPP 19-20
9 3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of variable valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of variable valencies.
Discuss formation of compounds such as
-Copper (I) Oxide.
-Copper (II) Oxide.
-Iron (II) Sulphate.
-Iron (III) Sulphate.
text book
K.L.B. BOOK IIP 20
9 4-5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical equations.
Balanced chemical equations.
By the end of the lesson, the learner should be able to:
To identify components of chemical equations.

To balance chemical equations correctly.
Review word equations;
Exposition of new concepts with probing questions;
Brief discussion.
Exposition;
Supervised practice.
text book
K.L.B. BOOK IIPP 21-23
K.L.B. BOOK IIPP 24-25
10 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Balanced chemical equations.(contd)
By the end of the lesson, the learner should be able to:
To balance chemical equations correctly.
Supervised practice;
Written exercise.
text book
K.L.B. BOOK IIPP 25-8
10 2
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Balanced chemical equations.(contd)
By the end of the lesson, the learner should be able to:
To balance chemical equations correctly.
Supervised practice;
Written exercise.
text book
K.L.B. BOOK IIPP 25-8
10 3
CHEMICAL FAMILIES
Alkali metals. Atomic and ionic radii of alkali metals
By the end of the lesson, the learner should be able to:





Identify alkali metals.
State changes in atomic and ionic radii of alkali metals.

Q/A to reviews elements of group I and their electronic configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Discussion & making deductions from the table.
The periodic
K.L.B. BOOK IIPP 28-29
10 4-5
CHEMICAL FAMILIES
Ionisation energy of alkali metals.
Physical properties of alkali metals.
By the end of the lesson, the learner should be able to:
State changes in number of energy levels and ionisation energy of alkali metals.
State and explain trends in physical properties of alkali metals.
Examine a table of elements, number of energy levels and their ionization energy.
Discuss the trend deduced from the table.

Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion on physical properties of alkali metals.

text book
Chart ? comparative properties of Li, Na, K.
K.L.B. BOOK II
K.L.B. BOOK IIPP 30-31
11 1
CHEMICAL FAMILIES
Chemical properties of alkali metals.
By the end of the lesson, the learner should be able to:
To describe reaction of alkali metals with water.
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.
text book
K.L.B. BOOK IIP. 32
11 2
CHEMICAL FAMILIES
Chemical properties of alkali metals.
By the end of the lesson, the learner should be able to:
To describe reaction of alkali metals with water.
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.
text book
K.L.B. BOOK IIP. 32
11 3
CHEMICAL FAMILIES
Reaction of alkali metals with chlorine gas.
By the end of the lesson, the learner should be able to:
To write balanced equations for reaction of alkali metals with chlorine gas.
Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.

Sodium, chlorine.
K.L.B. BOOK IIP. 33
11 4-5
CHEMICAL FAMILIES
Reaction of alkali metals with chlorine gas.
Compounds of alkali metals.
By the end of the lesson, the learner should be able to:
To write balanced equations for reaction of alkali metals with chlorine gas.
Write chemical formulae for compounds of alkali metals.
Explain formation of hydroxides, oxides and chlorides of alkali metals.
Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.


Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals.
Discuss combination of ions of alkali metals with anions.
Sodium, chlorine.
text book
K.L.B. BOOK IIP. 33
K.L.B. BOOK II pp 33
12 1
CHEMICAL FAMILIES
Uses of alkali metals.
By the end of the lesson, the learner should be able to:
State uses of alkali metals.
Descriptive approach: Teacher elucidates uses of alkali metals.
text book
K.L.B. BOOK II pp 34
12 2
CHEMICAL FAMILIES
Alkaline Earth metals Atomic and ionic radii of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Identify alkaline earth metals.

State changes in atomic and ionic radii of alkaline earth metals.
Q/A: Elements of group I and their electron configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Make deductions from the table.
Some alkaline earth metals.
K.L.B. BOOK II pp 34
12 3
CHEMICAL FAMILIES
Alkaline Earth metals Atomic and ionic radii of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Identify alkaline earth metals.

State changes in atomic and ionic radii of alkaline earth metals.
Q/A: Elements of group I and their electron configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Make deductions from the table.
Some alkaline earth metals.
K.L.B. BOOK II pp 34
12 4-5
CHEMICAL FAMILIES
Physical properties of alkaline earth metals.
Electrical properties of alkaline earth metals.
By the end of the lesson, the learner should be able to:
State and explain trends in physical properties of alkaline earth metals.
To describe electrical properties of alkaline earth metals.
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion of physical properties of alkaline earth metals.

Teacher demonstration: -
To show alkaline metals are good conductors of electric charge.
Some alkaline earth metals.
K.L.B. BOOK II P. 35
K.L.B. BOOK IIP. 37
13

End term exams and closing


Your Name Comes Here


Download

Feedback