If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
Revision |
|||||||
2 | 1 |
WATER AND HYDROGEN
|
Burning candle wax in air.
|
By the end of the
lesson, the learner
should be able to:
Test for the products of burning candle wax in air. |
Teacher demonstrations; Discussion. |
Candles, lime water. |
K.L.B. BOOK I PP. 91-92 |
|
2 | 2 |
WATER AND HYDROGEN
|
Reaction of cold water with metals.
|
By the end of the
lesson, the learner
should be able to:
Identify products of reaction of cold water with metals. |
Teacher demonstrations;
Discussion; Write equations. |
Calcium, sodium grain.
|
K.L.B.
BOOK I PP. 92-94 |
|
2 | 3 |
WATER AND HYDROGEN
|
Reaction of steam with metals.
|
By the end of the
lesson, the learner
should be able to:
Identify products of reaction of steam with metals. Recall the reactivity series of metals based on reaction with water. |
Teacher demonstrations;
Test for evolved gas; Discussion; Write equations. Review reactivity series. |
Magnesium ribbon, sand, iron / steel wool.
|
K.L.B.
BOOK I PP. 94-96 |
|
2 | 4-5 |
WATER AND HYDROGEN
|
Hydrogen.
- lab preparation.
Hydrogen. - physical properties. |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen. State physical properties of hydrogen. |
Teacher demonstrations;
Discussion. Probing questions and discussion. |
Zinc granules,
dil HCl, conc. sulphuric acid. Zinc granules, dil HCl, conc. sulphuric acid, litmus papers. |
K.L.B.
BOOK I P. 97 K.L.B. BOOK I PP. 97-98 |
|
3 | 1 |
WATER AND HYDROGEN
|
Hydrogen as a reducing agent.
|
By the end of the
lesson, the learner
should be able to:
Describe an experiment to show reducing properties of hydrogen. |
Teacher demonstration;
Discussion; Write equations. |
Copper (II) oxide, anhydrous Copper (II) sulphate., dry hydrogen.
|
K.L.B.
BOOK I PP. 99-101 |
|
3 | 2 |
WATER AND HYDROGEN
|
Burning hydrogen in air.
|
By the end of the
lesson, the learner
should be able to:
Identify products of burning hydrogen in air. |
Teacher demonstration;
Discussion. |
Anhydrous calcium chloride,
hydrogen, U tube, ice cold water. |
K.L.B.
BOOK I PP. 101-102 |
|
3 | 3 |
WATER AND HYDROGEN
|
Uses of hydrogen.
|
By the end of the
lesson, the learner
should be able to:
State uses of hydrogen. |
Probing questions;
Open discussion. |
TEXT BOOK
|
K.L.B.
BOOK I PP. 102-103 |
|
3 | 4-5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Atomic and mass numbers.
First twenty elements of the periodic table. |
By the end of the
lesson, the learner
should be able to:
Name the subatomic particles in an atom. Define atomic number and mass number of an atom. Represent atomic and mass numbers symbolically. List the first twenty elements of the periodic table. Write chemical symbols of the first twenty elements of the periodic table. |
Exposition on new concepts;
Probing questions; Brief discussion. Expository approach: referring to the periodic table, teacher exposes the first twenty elements. Writing down a list of first twenty elements of the periodic table. |
text book
Periodic table. |
K.L.B.
BOOK II PP. 1-3 |
|
4 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Isotopes.
|
By the end of the
lesson, the learner
should be able to:
Define isotopes. Give examples of isotopes. |
Exposition of definition and examples of isotopes.
Giving examples of isotopes. |
Periodic table.
|
K.L.B.
BOOK II P. 4 PP. 5-8 |
|
4 | 2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration.
|
By the end of the
lesson, the learner
should be able to:
Represent isotopes symbolically. Define an energy level. Describe electronic configuration in an atom. |
Exposition ? teacher exposes new concepts about electronic configuration.
Written exercise. |
Periodic table.
|
K.L.B.
BOOK II P. 4 PP. 5-9 |
|
4 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration in diagrams.
|
By the end of the
lesson, the learner
should be able to:
Represent electronic configuration diagrammatically. |
Supervised practice;
Written exercise. |
text book
|
K.L.B.
BOOK II PP. 5-8 |
|
4 | 4-5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Periods of the periodic table.
Groups of the periodic table. |
By the end of the
lesson, the learner
should be able to:
Identify elements of the same period. |
Exposition ? Definition of a period.
Q/A: Examples of elements of the same period. Exposition ? definition of a group. Q/A: examples of elements of the same group. |
Periodic table.
|
K.L.B. BOOK IIP. 9
|
|
5 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
R.M.M. and isotopes.
|
By the end of the
lesson, the learner
should be able to:
Calculate R.M.M. from isotopic composition. |
Supervised practice involving calculation of RMM from isotopic composition.
|
text book
|
K.L.B. BOOK IIPP. 11-13
|
|
5 | 2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
R.M.M. and isotopes.
|
By the end of the
lesson, the learner
should be able to:
Calculate R.M.M. from isotopic composition. |
Supervised practice involving calculation of RMM from isotopic composition.
|
text book
|
K.L.B. BOOK IIPP. 11-13
|
|
5 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
R.M.M. and isotopes.
|
By the end of the
lesson, the learner
should be able to:
Calculate R.M.M. from isotopic composition. |
Supervised practice involving calculation of RMM from isotopic composition.
|
text book
|
K.L.B. BOOK IIPP. 11-13
|
|
5 | 4-5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Positive ions and ion formation.
Positive ions representation. |
By the end of the
lesson, the learner
should be able to:
To define an ion and a cation. To represent formation of positive ions symbolically. |
Teacher gives examples of stable atoms.
Guided discovery that metals need to lose one, two or three electrons to attain stability. Examples of positive ions. Diagrammatic representation of cations. |
text book
Chart ion model. |
K.L.B. BOOK IIPP 14-15
K.L.B. BOOK IIP 16 |
|
6 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Negative ions and ion formation.
|
By the end of the
lesson, the learner
should be able to:
To define an anion. To describe formation of negative ions symbolically. |
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions. Diagrammatic representation of anions. |
Chart ion model.
|
K.L.B. BOOK IIP 17
|
|
6 | 2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Negative ions and ion formation.
|
By the end of the
lesson, the learner
should be able to:
To define an anion. To describe formation of negative ions symbolically. |
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions. Diagrammatic representation of anions. |
Chart ion model.
|
K.L.B. BOOK IIP 17
|
|
6 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Negative ions and ion formation.
|
By the end of the
lesson, the learner
should be able to:
To define an anion. To describe formation of negative ions symbolically. |
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions. Diagrammatic representation of anions. |
Chart ion model.
|
K.L.B. BOOK IIP 17
|
|
6 | 4-5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Negative ions and ion formation.
Valencies of metals. |
By the end of the
lesson, the learner
should be able to:
To define an anion. To describe formation of negative ions symbolically. Recall valencies of metals among the first twenty elements in the periodic table. |
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions. Diagrammatic representation of anions. Q/A to review previous lesson; Exposition; Guided discovery. |
Chart ion model.
Periodic table. |
K.L.B. BOOK IIP 17
|
|
7 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencie of non-metals.
|
By the end of the
lesson, the learner
should be able to:
Recall valencies of non-metals among the first twenty elements in the periodic table. |
Q/A to review previous lesson;
Exposition; Guided discovery. |
Periodic table.
|
K.L.B. BOOK IIP 17
|
|
7 | 2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencies of radicals.
|
By the end of the
lesson, the learner
should be able to:
Define a radical. Recall the valencies of common radicals. |
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies. |
text book
|
K.L.B. BOOK IIP 18
|
|
7 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencies of radicals.
|
By the end of the
lesson, the learner
should be able to:
Define a radical. Recall the valencies of common radicals. |
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies. |
text book
|
K.L.B. BOOK IIP 18
|
|
7 | 4-5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Valencies of radicals.
Oxidation number. |
By the end of the
lesson, the learner
should be able to:
Define a radical. Recall the valencies of common radicals. Define oxidation number. Predict oxidation numbers from position of elements in the periodic table. |
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies. Q/A: Valencies. Expose oxidation numbers of common ions. Students complete a table of ions and their oxidation numbers. |
text book
The periodic table. |
K.L.B. BOOK IIP 18
K.L.B. BOOK IIvP 18 |
|
8 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration, ion formed, valency and oxidation number
|
By the end of the
lesson, the learner
should be able to:
Relate electronic configuration, ion formed, valency and oxidation number of different elements. |
Written exercise;
Exercise review. |
text book
|
K.L.B. BOOK IIP 18
|
|
8 | 2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Electronic configuration, ion formed, valency and oxidation number
|
By the end of the
lesson, the learner
should be able to:
Relate electronic configuration, ion formed, valency and oxidation number of different elements. |
Written exercise;
Exercise review. |
text book
|
K.L.B. BOOK IIP 18
|
|
8 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
- Elements of equal valencies.
|
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of equal valencies. |
Discuss formation of compounds such as NaCl, MgO.
|
text book
|
K.L.B. BOOK IIPP 19-20
|
|
8 | 4-5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
- Elements of equal valencies.
Chemical formulae of compounds. -Elements of unequal valencies. |
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of equal valencies. To derive the formulae of some compounds involving elements of unequal valencies. |
Discuss formation of compounds such as NaCl, MgO.
Discuss formation of compounds such as MgCl2 Al (NO3)3 |
text book
|
K.L.B. BOOK IIPP 19-20
|
|
9 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
-Elements of variable valencies.
|
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of variable valencies. |
Discuss formation of compounds such as
-Copper (I) Oxide. -Copper (II) Oxide. -Iron (II) Sulphate. -Iron (III) Sulphate. |
text book
|
K.L.B. BOOK IIP 20
|
|
9 | 2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
-Elements of variable valencies.
|
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of variable valencies. |
Discuss formation of compounds such as
-Copper (I) Oxide. -Copper (II) Oxide. -Iron (II) Sulphate. -Iron (III) Sulphate. |
text book
|
K.L.B. BOOK IIP 20
|
|
9 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical formulae of compounds.
-Elements of variable valencies.
|
By the end of the
lesson, the learner
should be able to:
To derive the formulae of some compounds involving elements of variable valencies. |
Discuss formation of compounds such as
-Copper (I) Oxide. -Copper (II) Oxide. -Iron (II) Sulphate. -Iron (III) Sulphate. |
text book
|
K.L.B. BOOK IIP 20
|
|
9 | 4-5 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Chemical equations.
Balanced chemical equations. |
By the end of the
lesson, the learner
should be able to:
To identify components of chemical equations. To balance chemical equations correctly. |
Review word equations;
Exposition of new concepts with probing questions; Brief discussion. Exposition; Supervised practice. |
text book
|
K.L.B. BOOK IIPP 21-23
K.L.B. BOOK IIPP 24-25 |
|
10 | 1 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.(contd)
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Supervised practice;
Written exercise. |
text book
|
K.L.B. BOOK IIPP 25-8
|
|
10 | 2 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.(contd)
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Supervised practice;
Written exercise. |
text book
|
K.L.B. BOOK IIPP 25-8
|
|
10 | 3 |
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
|
Balanced chemical equations.(contd)
|
By the end of the
lesson, the learner
should be able to:
To balance chemical equations correctly. |
Supervised practice;
Written exercise. |
text book
|
K.L.B. BOOK IIPP 25-8
|
|
10 | 4-5 |
CHEMICAL FAMILIES
|
Alkali metals.
Atomic and ionic radii of alkali metals
Ionisation energy of alkali metals. |
By the end of the
lesson, the learner
should be able to:
Identify alkali metals. State changes in atomic and ionic radii of alkali metals. State changes in number of energy levels and ionisation energy of alkali metals. |
Q/A to reviews elements of group I and their electronic configuration. Examine a table of elements, their symbols and atomic & ionic radii. Discussion & making deductions from the table. Examine a table of elements, number of energy levels and their ionization energy. Discuss the trend deduced from the table. |
The periodic
text book |
K.L.B. BOOK IIPP 28-29
|
|
11 | 1 |
CHEMICAL FAMILIES
|
Physical properties of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkali metals. |
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion on physical properties of alkali metals. |
Chart ? comparative properties of Li, Na, K.
|
K.L.B. BOOK IIPP 30-31
|
|
11 | 2 |
CHEMICAL FAMILIES
|
Physical properties of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkali metals. |
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion on physical properties of alkali metals. |
Chart ? comparative properties of Li, Na, K.
|
K.L.B. BOOK IIPP 30-31
|
|
11 | 3 |
CHEMICAL FAMILIES
|
Physical properties of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkali metals. |
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion on physical properties of alkali metals. |
Chart ? comparative properties of Li, Na, K.
|
K.L.B. BOOK IIPP 30-31
|
|
11 | 4-5 |
CHEMICAL FAMILIES
|
Chemical properties of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
To describe reaction of alkali metals with water. |
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions. Deduce and discuss the order of reactivity down the group. |
text book
|
K.L.B. BOOK IIP. 32
|
|
12 | 1 |
CHEMICAL FAMILIES
|
Reaction of alkali metals with chlorine gas.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkali metals with chlorine gas. |
Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. |
Sodium, chlorine.
|
K.L.B. BOOK IIP. 33
|
|
12 | 2 |
CHEMICAL FAMILIES
|
Reaction of alkali metals with chlorine gas.
|
By the end of the
lesson, the learner
should be able to:
To write balanced equations for reaction of alkali metals with chlorine gas. |
Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine. Word and balanced chemical equations for various reactions. |
Sodium, chlorine.
|
K.L.B. BOOK IIP. 33
|
|
12 | 3 |
CHEMICAL FAMILIES
|
Compounds of alkali metals.
|
By the end of the
lesson, the learner
should be able to:
Write chemical formulae for compounds of alkali metals. Explain formation of hydroxides, oxides and chlorides of alkali metals. |
Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals.
Discuss combination of ions of alkali metals with anions. |
text book
|
K.L.B. BOOK II pp 33
|
|
12 | 4-5 |
CHEMICAL FAMILIES
|
Uses of alkali metals.
Alkaline Earth metals Atomic and ionic radii of alkaline earth metals. |
By the end of the
lesson, the learner
should be able to:
State uses of alkali metals. Identify alkaline earth metals. State changes in atomic and ionic radii of alkaline earth metals. |
Descriptive approach: Teacher elucidates uses of alkali metals.
Q/A: Elements of group I and their electron configuration. Examine a table of elements, their symbols and atomic & ionic radii. Make deductions from the table. |
text book
Some alkaline earth metals. |
K.L.B. BOOK II pp 34
|
|
13 | 1 |
CHEMICAL FAMILIES
|
Physical properties of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkaline earth metals. |
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion of physical properties of alkaline earth metals. |
Some alkaline earth metals.
|
K.L.B. BOOK II P. 35
|
|
13 | 2 |
CHEMICAL FAMILIES
|
Physical properties of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkaline earth metals. |
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion of physical properties of alkaline earth metals. |
Some alkaline earth metals.
|
K.L.B. BOOK II P. 35
|
|
13 | 3 |
CHEMICAL FAMILIES
|
Physical properties of alkaline earth metals.
|
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkaline earth metals. |
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion of physical properties of alkaline earth metals. |
Some alkaline earth metals.
|
K.L.B. BOOK II P. 35
|
|
13 | 4-5 |
CHEMICAL FAMILIES
|
Physical properties of alkaline earth metals.
Electrical properties of alkaline earth metals. |
By the end of the
lesson, the learner
should be able to:
State and explain trends in physical properties of alkaline earth metals. To describe electrical properties of alkaline earth metals. |
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers. Detailed discussion of physical properties of alkaline earth metals. Teacher demonstration: - To show alkaline metals are good conductors of electric charge. |
Some alkaline earth metals.
|
K.L.B. BOOK II P. 35
K.L.B. BOOK IIP. 37 |
Your Name Comes Here