If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Endothermic and Exothermic Reactions.
|
By the end of the
lesson, the learner
should be able to:
To differentiate between endothermic & exothermic reactions. |
Investigate temperature changes in solution formation. Obtain changes in temperature when ammonium nitrate and sodium hydroxide are dissolved in water, one at a time. |
Ammonium nitrate, Sodium hydroxide, thermometers. |
K.L.B. BK IV
Pages 32-33 |
|
2 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Energy level diagrams.
|
By the end of the
lesson, the learner
should be able to:
Represent endothermic reactions with exothermic reactions with energy level diagrams. |
Probing questions on relative energies of reactants and products in endothermic and exothermic and endothermic reactions.
|
student book
|
K.L.B. BK IV
Pages 33-35 |
|
2 | 3 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy Notation.
Change of state.
|
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy. Distinguish positive enthalpy change from negative enthalpy change. Determine the M.P/ B.P of a pure substance. |
Q/A and brief discussion.
Class experiments: determine B.P of pure water/ M.P of naphthalene / ice. Use experimental results to plot temperature-time graphs. Explain the shape of the graphs. Q/A: review kinetic theory of matter. Apply the theory to explain the shape of the graph, and nature of bonding in substances. |
Ice, naphthalene, thermometers, graph papers.
|
K.L.B. BK IV
Pages 35-39 |
|
2 | 4-5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
CAT
Molar heat of solution. |
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of given substances. |
Dissolve known masses of ammonia nitrate / sodium hydroxide in known volumes of water. Determine temperature changes. Calculate molar heat of solution. Supervised practice. |
Ammonia nitrate / sodium hydroxide, thermometers. |
K.L.B. BK IV Pages 40-41 |
|
2 | 6 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of solution of H2SO4.
|
By the end of the
lesson, the learner
should be able to:
Determine molar heat of solution of H2SO4. |
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature. Work out the molar heat of solution of H2SO4. |
Conc. H2SO4, thermometers.
|
K.L.B. BK IV
Pages 42-45 |
|
3 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy of combustion.
Enthalpy of combustion.
|
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy of combustion. Determine the enthalpy of combustion of ethanol. Explain why actual heats of combustion are usually lower than the theoretical values. |
Group experiments / teacher demonstration.
Obtain and record results. Work out calculations. |
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
|
K.L.B. BK IV
Pages 45-48 |
|
3 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Enthalpy of combustion.
Enthalpy of combustion.
|
By the end of the
lesson, the learner
should be able to:
Define the term enthalpy of combustion. Determine the enthalpy of combustion of ethanol. Explain why actual heats of combustion are usually lower than the theoretical values. |
Group experiments / teacher demonstration.
Obtain and record results. Work out calculations. |
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
|
K.L.B. BK IV
Pages 45-48 |
|
3 | 3 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of displacement of ions.
|
By the end of the
lesson, the learner
should be able to:
Define the term molar heat of solution of displacement of ions. Determine the molar heat of solution of displacement of ions. |
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution. Work out the molar heat of displacement of a substance from a solution of its ions. |
Zinc, iron, magnesium, copper sulphate solution.
|
K.L.B. BK IV
Pages 48-50 |
|
3 | 4-5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Molar heat of displacement of ions.
Molar heat of solution of neutralization. |
By the end of the
lesson, the learner
should be able to:
Define the term molar heat of solution of displacement of ions. Determine the molar heat of solution of displacement of ions. Define the term neutralization. Determine the molar heat of neutralization of HCl with NaOH. |
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution. Work out the molar heat of displacement of a substance from a solution of its ions. Class experiments: Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide. Note highest temperature of the solution. Work out the molar heat of neutralization. Solve other related problems. Assignment. |
Zinc, iron, magnesium, copper sulphate solution.
2M HCl of known volume, 1M / 2M sodium hydroxide. |
K.L.B. BK IV
Pages 48-50 K.L.B. BK IV Pages 50-53 |
|
3 | 6 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Standard enthalpy changes.
|
By the end of the
lesson, the learner
should be able to:
Define the term standard enthalpy change. Denote standard enthalpy change with the correct notation. |
Exposition & brief discussion.
|
student book
|
K.L.B. BK IV
Pages 54-56 |
|
4 | 1 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Hess?s Law.
|
By the end of the
lesson, the learner
should be able to:
State Hess?s law. Solve problems related to Hess?s law. |
Detailed discussion & guided discovery of the law.
Illustrations of energy cycles and energy levels leading to Hess?s law. Worked examples. Supervised practice Written assignment. |
student book
|
K.L.B. BK IV
Pages 56-57 |
|
4 | 2 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat of solution hydration energy and lattice energy.
|
By the end of the
lesson, the learner
should be able to:
Define the terms lattice energy and hydration energy. Explain the relationship between heat of solution, hydration energy. Solve related problems. |
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy. Worked examples. Assignment. |
student book
|
K.L.B. BK IV
Pages 60-64 |
|
4 | 3 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
|
Heat of solution hydration energy and lattice energy.
|
By the end of the
lesson, the learner
should be able to:
Define the terms lattice energy and hydration energy. Explain the relationship between heat of solution, hydration energy. Solve related problems. |
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy. Worked examples. Assignment. |
student book
|
K.L.B. BK IV
Pages 60-64 |
|
4 | 4-5 |
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
RATES OF REACTION & REVERSIBLE REACTIONS. |
Heat values of fuels.
Environmental effects of fuels. Effect of concentration on rate of a reaction |
By the end of the
lesson, the learner
should be able to:
Define the term fuel. Describe energy changes when a fuel undergoes combustion. Outline factors considered when choosing a suitable fuel. Outline some environmental effects of fuels. Identify measures taken to reduce environmental pollution. Explain the effects of change of concentration of reactants on a reaction. |
Probing questions and brief discussion.
Q/A & open discussion. Group experiments to investigate effect of concentration on rate of reaction using dil. HCl and magnesium ribbons. Determine the time taken for reactions to be complete. Calculation of concentration of HCl in moles per litre. Discuss the observations and sketch illustrative graphs. |
student book
Portions of 2M HCl diluted with different volumes of water, Stopwatches. |
K.L.B. BK IV
Pages 64-66 K.L.B. BK IV Pages 73-74 |
|
4 | 6 |
RATES OF REACTION & REVERSIBLE REACTIONS.
|
Effect of concentration on rate of a reaction
|
By the end of the
lesson, the learner
should be able to:
Explain the effects of change of concentration of reactants on a reaction. |
Group experiments to investigate effect of concentration on rate of reaction using dil. HCl and magnesium ribbons.
Determine the time taken for reactions to be complete. Calculation of concentration of HCl in moles per litre. Discuss the observations and sketch illustrative graphs. |
Portions of 2M HCl diluted with different volumes of water,
Stopwatches. |
K.L.B. BK IV
Pages 73-74 |
|
5 | 1 |
RATES OF REACTION & REVERSIBLE REACTIONS.
|
Effect of time of reaction on the rate of reaction.
|
By the end of the
lesson, the learner
should be able to:
Explain how the rate or reaction changes as the reaction proceed |
Group experiments: investigate volume of gas evolved when magnesium reacts with dilute HCl.
Collect evolved gas and sketch and illustrative graphs. Discuss the results. |
Magnesium ribbons, stopwatches, conical flask.
100cm3 0.5M HCl, syringes, stoppers, tubes and connectors. |
K.L.B. BK IV
Pages 75-79 |
|
5 | 2 |
ELECTRO-CHEMISTRY.
|
Redox reactions.
|
By the end of the
lesson, the learner
should be able to:
Describe redox reactions in terms of gain / loss of electrons. Identify oxidizing / reducing agents involved in redox reactions. |
Q/A: review cations, anions and charges. Write down ionic half equations and identify reducing / oxidizing agents. |
student book
|
K.L.B. BK IV
Pages 108-9 |
|
5 | 3 |
ELECTRO-CHEMISTRY.
|
Oxidizing Numbers.
|
By the end of the
lesson, the learner
should be able to:
Outline rules of assigning oxidation numbers. Determine the oxidation numbers of an element in a given compound. Explain the use of oxidation numbers in naming compounds. |
Exposition and giving specific examples.
Work out oxidizing number of elements in given compounds. Copy and complete a table of compounds containing elements that more than one oxidation number. |
student book
|
K.L.B. BK IV
Pages 109-116 |
|
5 | 4-5 |
ELECTRO-CHEMISTRY.
|
Displacement reactions.
The oxidizing power of an element. |
By the end of the
lesson, the learner
should be able to:
Explain change of oxidation numbers during redox / displacement reactions. Arrange elements in order of their reducing power. Arrange elements in order of their oxidizing power. |
Class standard experiments: reacting metals with solutions containing metal ions.
Taking note of reactions and those that do not take place; and tabulating the results. Teacher demonstration / group expts: Adding halogens to solutions containing halide ions. Tabulate the results. Discuss the results and arrive at the oxidizing power series of halogens. |
Metals: Ca, Na, Zn, Fe, Pb, and Cu.
Solutions containing Ca2+, Mg2+, Zn2+, Fe2+. Halogens: Cl2 (g), Br2 (l), I2 (s). Halides: KCl, KBr, KI. |
K.L.B. BK IV
Pages 116-120 K.L.B. BK IV Pages 120-122 |
|
5 | 6 |
ELECTRO-CHEMISTRY.
|
Cell diagrams.
|
By the end of the
lesson, the learner
should be able to:
Define the terms electrode, potential and e.m.f. of an electrochemical cell. Describe components of a cell diagram. Draw cell diagrams using correct notations. |
Teacher demonstration: Zinc/ copper cell.
Q/A & discussion: changes in oxidation numbers. Exposition: cell diagram and deducing the direction of electron flow. |
Zinc/ copper cell.
|
K.L.B. BK IV
Pages 123-128 |
|
6 | 1 |
ELECTRO-CHEMISTRY.
|
Standard Electrode Potentials.
|
By the end of the
lesson, the learner
should be able to:
Identify standard conditions for measuring electrode potentials. Define the term standard electrode potential of a cell. Write half reactions of electrochemical cells. |
Descriptive and expository approaches: teacher exposes new concepts.
|
student book
|
K.L.B. BK IV
Pages 129-131 |
|
6 | 2 |
ELECTRO-CHEMISTRY.
|
Standard electrode potential series.
|
By the end of the
lesson, the learner
should be able to:
Recall the order of standard electrode potentials. Compare oxidizing and reducing powers of substances. |
Q/A: review reactivity series, oxidizing agent, reducing agent.
Exposition: the order of standard electrode potentials. Discussion: oxidizing and reducing powers of substances. |
student book
|
K.L.B. BK IV
Pages 131-133 |
|
6 | 3 |
ELECTRO-CHEMISTRY.
|
Emf of a cell.
|
By the end of the
lesson, the learner
should be able to:
Calculate emf of a cell using standard electrodes potentials. |
Q/A: review half-cells.
Worked examples; supervised practice. Assignment. |
student book
|
K.L.B. BK IV
Pages 133-136 |
|
6 | 4-5 |
ELECTRO-CHEMISTRY.
|
Possibility of a reaction to take place.
Primary and secondary chemical cells. |
By the end of the
lesson, the learner
should be able to:
Predict whether a reaction will take place or not using standard electrode potentials. Describe the functioning of primary and secondary chemical cells. |
Worked examples.
Oral exercise. Assignment. Exposition of new concepts and brief discussion Assignment. |
student book
|
K.L.B. BK IV
Pages 136-137 K.L.B. BK IV Pages 138-141 |
|
6 | 6 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute NaCl.
|
By the end of the
lesson, the learner
should be able to:
Define the term electrolysis. Explain the concept of preferential discharge of ions. |
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected. Write down equations of reactions at each electrode. Discussion: preferential discharge of ions at electrodes. |
Dilute sodium chloride voltameter.
|
K.L.B. BK IV
Pages 141-144 |
|
7 | 1 |
ELECTRO-CHEMISTRY.
|
Electrolysis of brine.
|
By the end of the
lesson, the learner
should be able to:
Identify products of electrolysis of brine. |
Teacher demonstration/ group experiments.
Test for the products of electrolysis. Write relevant equations. |
Brine voltameter.
|
K.L.B. BK IV
Pages 144-146 |
|
7 | 2 |
ELECTRO-CHEMISTRY.
|
Electrolysis of dilute sulphuric (VI) acid.
|
By the end of the
lesson, the learner
should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid. |
Teacher demonstration/ group experiments.
Test for the products of electrolysis. Write relevant equations. |
Sulphuric acid voltameter.
|
K.L.B. BK IV
Pages 146-148 |
|
7 | 3 |
ELECTRO-CHEMISTRY.
|
Factors affecting electrolysis.
|
By the end of the
lesson, the learner
should be able to:
Explain factors that affect electrolytic products discharged at electrodes. |
Q/A: review the electrochemical series of elements.
Teacher writes down order of ease of discharge of ions at electrodes. Discussion: other factors; giving suitable examples. |
student book
|
K.L.B. BK IV
Pages 153-5 |
|
7 | 4-5 |
ELECTRO-CHEMISTRY.
|
Application of electrolysis.
Faraday?s law of electrolysis. |
By the end of the
lesson, the learner
should be able to:
Describe some applications of electrolysis. State Faraday?s law of electrolysis. Solve problems related to Faraday?s law of electrolysis. |
Probing questions and brief discussion on applications of electrolysis.
Practical assignment on electrolysis: electroplating an iron nail with a suitable metal. Discuss above results, leading to Faraday?s law of electrolysis. Worked examples. Assignment. |
Suitable voltameter.
Weighing balance, stop watch, copper sulphate voltameter. |
K.L.B. BK IV
Pages 155-7 K.L.B. BK IV Pages 161-4 |
|
7 | 6 |
METALS
|
Ores of some metals.
|
By the end of the
lesson, the learner
should be able to:
Name the chief ores of some metals. |
Exposition and brief discussion. |
|
K.L.B. BK IV
Pages 168-9 |
|
8 |
HALF TERM |
|||||||
9 | 1 |
METALS
|
Occurrence and extraction of sodium.
|
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of sodium. |
Oral questions on electrolysis and equations at electrodes.
Brief discussion on occurrence and extraction. |
Chart: Down?s cell.
|
K.L.B. BK IV
Pages 170-171 |
|
9 | 2 |
METALS
|
Occurrence and extraction of aluminium.
Occurrence and extraction of iron. |
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of aluminium. Describe occurrence and extraction of iron. |
Brief discussion.
Write relevant chemical equations. |
student book
Chart: Blast furnace. |
K.L.B. BK IV
Pages 171-3 |
|
9 | 3 |
METALS
|
Occurrence and extraction of zinc.
|
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of zinc by electrolysis and reduction methods. |
Brief discussion.
Write relevant chemical equations. |
Flow chart: extraction of Zinc.
|
K.L.B. BK IV
Pages 175-9 |
|
9 | 4-5 |
METALS
|
Occurrence and extraction of zinc.
Extraction of lead. |
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of zinc by electrolysis and reduction methods. Explain how lead is extracted. |
Brief discussion.
Write relevant chemical equations. Q/A & brief discussion. Write balanced chemical equations leading to extraction of lead. |
Flow chart: extraction of Zinc.
Flow chart: extraction of lead. |
K.L.B. BK IV
Pages 175-9 K.L.B. BK IV Pages 179-80 |
|
9 | 6 |
METALS
|
Occurrence and extraction of copper.
|
By the end of the
lesson, the learner
should be able to:
Describe extraction of copper. |
Q/A & brief discussion.
Write balanced chemical equations leading to extraction of copper. |
Flow chart: extraction of copper.
|
K.L.B. BK IV
Pages 181-183 |
|
10 | 1 |
METALS
|
Physical properties of some metals.
|
By the end of the
lesson, the learner
should be able to:
State general properties of metals. Explain the difference in physical properties of metals. |
Compare physical properties of some metals as summarized in a chart.
Q/A & discussion based on physical properties. |
student book
|
K.L.B. BK IV
Pages 183-4 |
|
10 | 2 |
METALS
|
Reaction of metals with oxygen.
|
By the end of the
lesson, the learner
should be able to:
Explain effect of burning metals in air. |
Teacher demonstration / Group experiments.
Burning some metals in air. Write relevant equations. Brief discussion. |
Common lab. metals.
|
K.L.B. BK IV
Pages 184-6 |
|
10 | 3 |
METALS
|
Reaction of metals with cold water and steam.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of metals with cold water and steam. Arrange the metals in order of reactivity with cold water and steam. |
Class experiments:
Investigate reaction of some metals with cold water and steam. Analyse the results. |
Metals: Al, Zn, Fe, Cu.
|
K.L.B. BK IV
Pages 186-9 |
|
10 | 4-5 |
METALS
|
Reaction of metals with chlorine.
|
By the end of the
lesson, the learner
should be able to:
Describe the reaction of metals with chlorine. |
Teacher demonstration in a fume cupboard / in the open.
Investigate reaction of metals with chorine Write corresponding equations. |
Metals: Al, Zn, Fe, Cu.
|
K.L.B. BK IV
Pages 189-191 |
|
10 | 6 |
METALS
|
Reaction of metals with acids.
|
By the end of the
lesson, the learner
should be able to:
Describe and explain reaction of metals with acids. |
Group experiments: investigate reaction of metals with dilute acids.
Teacher demonstration: investigate reaction of metals with concentrated acids. Discuss the observations made and write relevant chemical equations. |
Metals: Al, Zn, Fe, Cu.
Acids; HCl, HNO3, H2SO4. |
K.L.B. BK IV
Pages 191-4 |
|
11 | 1 |
METALS
|
Uses of metals.
|
By the end of the
lesson, the learner
should be able to:
State uses of some metals and alloys. |
Q/A & brief discussion;
Uses of Sodium, Aluminium, Zinc, Iron and Copper & some alloys. |
student book
|
K.L.B. BK IV
Pages 194-7 |
|
11 | 2 |
METALS
|
Environmental effects of extraction of metals.
|
By the end of the
lesson, the learner
should be able to:
Identify some environmental effects of extraction of metals. |
Oral questions and open discussion.
Assignment / Topic review. |
student book
|
K.L.B. BK IV
Pages 197-8 |
|
11 | 3 |
RADIOACTIVITY
|
Definition of radioactivity.
|
By the end of the
lesson, the learner
should be able to:
Define radioactivity, a nuclide and radioactive decay. Differentiate between natural and artificial radioactivity. |
Q/A: Review the atomic structure. Exposition: symbolic representation of an atom / nucleus. Exposition: meaning of radioactivity and radioactive decay. Discussion: artificial and natural radioactivity. |
student book
|
K.L.B. BK IV
Pages 249-251 |
|
11 | 4-5 |
RADIOACTIVITY
|
Alpha particles.
Equations involving alpha particles. Beta particles. Gamma rays. Radioactive Half-Life. |
By the end of the
lesson, the learner
should be able to:
State properties of alpha particles. Describe methods of detecting alpha particles. Write down and balance equations involving alpha particles. State properties of beta particles. Define isotopes and isobars. Write down balanced equations involving both alpha and beta particles. State properties of gamma rays. Define the term radioactive half-life. Solve problems relating to half ?life |
Q/A: position of helium in the periodic table.
Expository approach: Q/A: Review atomic and mass numbers. Examples of balanced equations. Supervised practice. Q/A: Review isotopes. Expository approach: teacher briefly exposes new concepts. Examples of equations. Supervised practice. Assignment. Teacher demonstration: Dice experiment. Exposition of the term half-life. Worked examples. Written exercise |
student book
student book Dice. |
K.L.B. BK IV
Pages 251-253 |
|
11 | 6 |
RADIOACTIVITY
|
Radioactive decay curve.
Nuclear fusion and nuclear fission. Applications of radioactivity. |
By the end of the
lesson, the learner
should be able to:
Plot a radioactive decay curve to deduce the half ?life from the curve. Differentiate between nuclear fusion and nuclear fission. Describe applications of radioactivity. |
Drawing a radioactive decay curve inferring the half-life of the sample from the graph.
Exposition of new concepts accompanied by nuclear equations. Brief discussion: Carbon dating, detecting leakage, medication, agriculture, industry; effect of static charges, etc. |
Graph papers.
student book |
K.L.B. BK IV
Pages 254-5 |
Your Name Comes Here