Home






SCHEME OF WORK
Chemistry
Form 4 2025
TERM I
School




To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.











Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1 1
ACIDS, BASES AND SALTS.
Strength of acids. Acids in aqueous form.
By the end of the lesson, the learner should be able to:


Define an acid in terms of hydrogen ions.

Explain strength of acids in aqueous form in terms of number of hydrogen ions present.




Class experiments: investigate reactions of magnesium and zinc carbonate with different acids.
Make and record observations in tabular form.
Make deductions from the observations.
Write relevant chemical equations and ionic equations.
Detailed discussion leading to the definition of an acid and explanation of strength of an acid.




Magnesium strip, zinc carbonate,
2M HCl,
2M H2SO4,
2M ethanoic acid.




K.L.B. BK IV
Pages 1-4
1 2
ACIDS, BASES AND SALTS.
pH values of acids. Electrical conductivities of aqueous acids.
By the end of the lesson, the learner should be able to:
Determine strength of acids using pH values.

Determine strengths of acids by comparing their electrical conductivities.

Classify acids as either strong or weak in terms of partial dissociations in aqueous solutions.
Q/A: review determination of strength of acids using a litmus paper and pH scale.
Class / group experiments: record colour of universal indicator in
2M HCl and 2M ethanoic acid.
Set up voltameters of 2M HCl and 2M ethanoic acid in turns.
Record amounts of current .
Discuss the observations.
Write corresponding ionic equations.
Universal
indicator,
2M HCl,
2M ethanoic acid,
dry cells,
carbon electrodes,
milli-ammeters,
wires, switches etc.
K.L.B. BK IV
Pages 4-6
1 3
ACIDS, BASES AND SALTS.
pH values of acids. Electrical conductivities of aqueous acids.
By the end of the lesson, the learner should be able to:
Determine strength of acids using pH values.

Determine strengths of acids by comparing their electrical conductivities.

Classify acids as either strong or weak in terms of partial dissociations in aqueous solutions.
Q/A: review determination of strength of acids using a litmus paper and pH scale.
Class / group experiments: record colour of universal indicator in
2M HCl and 2M ethanoic acid.
Set up voltameters of 2M HCl and 2M ethanoic acid in turns.
Record amounts of current .
Discuss the observations.
Write corresponding ionic equations.
Universal
indicator,
2M HCl,
2M ethanoic acid,
dry cells,
carbon electrodes,
milli-ammeters,
wires, switches etc.
K.L.B. BK IV
Pages 4-6
1 4-5
ACIDS, BASES AND SALTS.
Definition of a base in terms of hydroxide ions.
Neutralization reaction.
Strength of bases.
By the end of the lesson, the learner should be able to:
Define a base in terms of hydroxide ions.
Determine the results of reaction of an acid and a base.
Compare strengths of bases using pH values and electrical conductivity.


Classify bases/ alkali as either strong or weak in terms of complete / partial ionization.

Teacher demonstration:
Dissolve calcium hydroxide in water.
Carry out litmus test on the resulting solution.
Discuss the results; hence define a base in terms of hydroxide ions.
Add 1M HCl to an aqueous solution of Calcium hydroxide drop wise until colour, change of the universal indicator is noted.
Write ionic equation for the reaction.
Carry out pH tests of 2M NaOH and 2M ammonia solution using universal indicator solutions; and observe colour changes.

Carry out electrical conductivity tests of voltameters of the above solutions.

Discussion: relate number of hydroxide ions to pH values and electrical conductivity of bases.

Red litmus paper, calcium hydroxide solid.
1M HCl,
Calcium hydroxide,
universal indicator.
2M NaOH,
2M ammonia solution, universal indicator solutions, dry cells,
carbon electrodes,
milliammeters,
wires, switches etc
K.L.B. BK IV
Pages 6-7
K.L.B. BK IV
Pages 7-9
2 1
ACIDS, BASES AND SALTS.
Dissolving hydrogen chloride gas in water / methylbenzene.
By the end of the lesson, the learner should be able to:
Define a polar and a non-polar solvent.
Teacher demonstration:
Dissolving HCl gas in different solvents.
Discuss the observations.
Write down related balanced chemical equations.
Ammonia gas,
Methylbenzene, hydrogen chloride gas.
K.L.B. BK IV
Pages 9-11
2 2
ACIDS, BASES AND SALTS.
Dissolving ammonia gas in water/ methylbenzene.
By the end of the lesson, the learner should be able to:
Investigate effect of a polar / non-polar solvent on ammonia gas.
Carry out litmus tests on the resulting solution.
Make observations and deductions thereof.
Write down related balanced chemical equations.
Ammonia gas,
Methylbenzene.
K.L.B. BK IV
Pages 11-12
2 3
ACIDS, BASES AND SALTS.
Amphoteric oxides.
By the end of the lesson, the learner should be able to:
Define an amphoteric oxide.
Identify some amphoteric oxides.
Class experiment:
Carry out acid / base reactions with metal oxides.
Q/A: make deductions from the results.
Writing and balancing relevant equations.

2M Nitric acid
2M NaOH,
HNO3.
Amphoteric oxides.
K.L.B. BK IV
Pages 12-14
2 4-5
ACIDS, BASES AND SALTS.
Amphoteric oxides.
Precipitation Reactions.
By the end of the lesson, the learner should be able to:
Define an amphoteric oxide.
Identify some amphoteric oxides.

Define a precipitate.
Write ionic equations showing formation of precipitates.
Class experiment:
Carry out acid / base reactions with metal oxides.
Q/A: make deductions from the results.
Writing and balancing relevant equations.


Q/A: review definition of a salt.
Class experiment;
Add sodium carbonate or a suitable carbonate to various salt solutions containing Mg2+, Al3+, Ca2+, etc.
Make observations and discuss the results.

2M Nitric acid
2M NaOH,
HNO3.
Amphoteric oxides.
Soluble carbonates e.g. Na2CO3, K2CO3, (NH4)2CO3
Salt solutions containing Mg2+, Al3+, Ca2+, etc.
K.L.B. BK IV
Pages 12-14
K.L.B. BK IV
Pages 14-16
3 1
ACIDS, BASES AND SALTS.
Solubility of chlorides sulphites and sulphates.
Equations for formation of insoluble chlorides, sulphites and sulphates.
By the end of the lesson, the learner should be able to:
Find out cations that form (in)soluble chlorides, sulphates and sulphites.
Write down equations for formation of insoluble chlorides, sulphites and sulphates.
Class experiments: measure 2cc of 0.1M solution containing Pb2+ into a test tube.
Add drops of 2M NaCl solution.
(Later 2M Sodium Sulphate and 2M Sodium Sulphate).
Warm the mixture and make observations.
Repeat the procedure using other salt solutions containing other ions.
Tabulate the results.
Q/A: review observations made in the above experiments.
Discuss the solubility of the cations.
Write relevant ionic equations.
0.1M solution containing Pb2+, 2M NaCl solution, 2M sodium sulphate, source of heating.
student book
K.L.B. BK IV
Pages 16-17
3 2
ACIDS, BASES AND SALTS.
Complex ions.
By the end of the lesson, the learner should be able to:
Explain formation of complex ions.
Add drops of 2M sodium hydroxide / 2M ammonia solution to a solution containing Mg2+, Zn2+, etc.

Make observations and discuss the results.
2M Sodium hydroxide (2M ammonia solution),
solution containing Mg2+, Zn2+, etc.
K.L.B. BK IV
Pages 18-20
3 3
ACIDS, BASES AND SALTS.
Complex ions.
By the end of the lesson, the learner should be able to:
Explain formation of complex ions.
Add drops of 2M sodium hydroxide / 2M ammonia solution to a solution containing Mg2+, Zn2+, etc.

Make observations and discuss the results.
2M Sodium hydroxide (2M ammonia solution),
solution containing Mg2+, Zn2+, etc.
K.L.B. BK IV
Pages 18-20
3 4-5
ACIDS, BASES AND SALTS.
Solubility of a salt at a given temperature.
Problems solving on solubility.
By the end of the lesson, the learner should be able to:
Define the term solubility.
Determine solubility of a given salt at room temperature.
Solve problems involving solubility of a solute in a solvent at a given temperature.
Q/A: review the terms saturated, unsaturated solutions & crystallization.
Class experiment: determine mass of a solute that dissolves in 100cc of water at room temperature.

Worked examples.
Supervised practice.
Written assignment.
Suitable solutes.
Evaporating dish, watch glass, heating source, thermometer.
K.L.B. BK IV
Pages 20-21
K.L.B. BK IV
Pages 21-22
4 1
ACIDS, BASES AND SALTS.
Effect of temperature on solubility of a solute in a solvent.
By the end of the lesson, the learner should be able to:
Investigate the effect of temperature on solubility of a solute in a solvent.
Experiments involving solubility of KClO3 at different temperatures.
Note temperatures at which crystallization occurs.
Oral questions and discussion.
KClO3 thermometers, source of heat.
K.L.B. BK IV
Pages 22-25
4 2
ACIDS, BASES AND SALTS.
Effects of various salts on soap.
By the end of the lesson, the learner should be able to:
Determine the effects of various salts on soap.
Group experiments: form soap lather in distilled water, tap water, rainwater, dilute solution of sodium chloride and solutions containing Ca2+ and Zn2+.
Note volume of soap that forms lather readily.
distilled water, tap water, rainwater, dilute solution of sodium chloride and solutions containing Ca2+ and Zn2+.
K.L.B. BK IV
Pages 25-27
4 3
ACIDS, BASES AND SALTS.
Removal of hardness of water.
By the end of the lesson, the learner should be able to:
Identify ions for hardness of water.
Identify methods of removing hardness of water.
State merits & demerits of hard water.
Review results of above experiments.

Probing questions & brief discussion.

Assignment.
student book
K.L.B. BK IV
Pages 27-29
4 4-5
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Endothermic and Exothermic Reactions.
Energy level diagrams.
Enthalpy Notation. Change of state.
By the end of the lesson, the learner should be able to:
To differentiate between endothermic & exothermic reactions.
Represent endothermic reactions with exothermic reactions with energy level diagrams.
Define the term enthalpy.
Distinguish positive enthalpy change from negative enthalpy change.

Determine the M.P/ B.P of a pure substance.
Investigate temperature changes in solution formation.
Obtain changes in temperature when ammonium nitrate and sodium hydroxide are dissolved in water, one at a time.
Probing questions on relative energies of reactants and products in endothermic and exothermic and endothermic reactions.
Q/A and brief discussion.
Class experiments: determine B.P of pure water/ M.P of naphthalene / ice.
Use experimental results to plot temperature-time graphs.
Explain the shape of the graphs.
Q/A: review kinetic theory of matter.
Apply the theory to explain the shape of the graph, and nature of bonding in substances.

Ammonium nitrate,
Sodium hydroxide, thermometers.
student book
Ice, naphthalene, thermometers, graph papers.
K.L.B. BK IV
Pages 32-33
K.L.B. BK IV
Pages 35-39
5 1
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
CAT
By the end of the lesson, the learner should be able to:
5 2
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of solution.
By the end of the lesson, the learner should be able to:
Determine molar heat of solution of given substances.
Dissolve known masses of ammonia nitrate / sodium hydroxide in known volumes of water.
Determine temperature changes.
Calculate molar heat of solution. Supervised practice.

Ammonia nitrate / sodium hydroxide, thermometers.
K.L.B. BK IV
Pages 40-41
5 3
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of solution.
By the end of the lesson, the learner should be able to:
Determine molar heat of solution of given substances.
Dissolve known masses of ammonia nitrate / sodium hydroxide in known volumes of water.
Determine temperature changes.
Calculate molar heat of solution. Supervised practice.

Ammonia nitrate / sodium hydroxide, thermometers.
K.L.B. BK IV
Pages 40-41
5 4-5
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of solution of H2SO4.
Enthalpy of combustion. Enthalpy of combustion.
By the end of the lesson, the learner should be able to:
Determine molar heat of solution of H2SO4.
Define the term enthalpy of combustion.
Determine the enthalpy of combustion of ethanol.
Explain why actual heats of combustion are usually lower than the theoretical values.
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature.
Work out the molar heat of solution of H2SO4.

Group experiments / teacher demonstration.

Obtain and record results.


Work out calculations.
Conc. H2SO4, thermometers.
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
K.L.B. BK IV
Pages 42-45
K.L.B. BK IV
Pages 45-48
6

CYCLE I EXAMINATION

7

MIDTERM BREAK

8 1
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of displacement of ions.
By the end of the lesson, the learner should be able to:
Define the term molar heat of solution of displacement of ions.
Determine the molar heat of solution of displacement of ions.
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution.
Work out the molar heat of displacement of a substance from a solution of its ions.
Zinc, iron, magnesium, copper sulphate solution.
K.L.B. BK IV
Pages 48-50
8 2
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of displacement of ions.
By the end of the lesson, the learner should be able to:
Define the term molar heat of solution of displacement of ions.
Determine the molar heat of solution of displacement of ions.
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution.
Work out the molar heat of displacement of a substance from a solution of its ions.
Zinc, iron, magnesium, copper sulphate solution.
K.L.B. BK IV
Pages 48-50
8 3
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of solution of neutralization.
By the end of the lesson, the learner should be able to:
Define the term neutralization.
Determine the molar heat of neutralization of HCl with NaOH.
Class experiments:
Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide.
Note highest temperature of the solution.
Work out the molar heat of neutralization.
Solve other related problems.
Assignment.
2M HCl of known volume, 1M / 2M sodium hydroxide.
K.L.B. BK IV
Pages 50-53
8 4-5
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Standard enthalpy changes.
Hess?s Law.
By the end of the lesson, the learner should be able to:
Define the term standard enthalpy change.
Denote standard enthalpy change with the correct notation.

State Hess?s law.

Solve problems related to Hess?s law.
Exposition & brief discussion.
Detailed discussion & guided discovery of the law.
Illustrations of energy cycles and energy levels leading to Hess?s law.
Worked examples.
Supervised practice
Written assignment.
student book
K.L.B. BK IV
Pages 54-56
K.L.B. BK IV
Pages 56-57
9 1
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Heat of solution hydration energy and lattice energy.
By the end of the lesson, the learner should be able to:
Define the terms lattice energy and hydration energy.
Explain the relationship between heat of solution, hydration energy.
Solve related problems.
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy.
Worked examples.
Assignment.
student book
K.L.B. BK IV
Pages 60-64
9 2
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Heat of solution hydration energy and lattice energy.
By the end of the lesson, the learner should be able to:
Define the terms lattice energy and hydration energy.
Explain the relationship between heat of solution, hydration energy.
Solve related problems.
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy.
Worked examples.
Assignment.
student book
K.L.B. BK IV
Pages 60-64
9 3
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Heat values of fuels.
By the end of the lesson, the learner should be able to:
Define the term fuel.
Describe energy changes when a fuel undergoes combustion.
Outline factors considered when choosing a suitable fuel.
Probing questions and brief discussion.
student book
K.L.B. BK IV
Pages 64-66
9 4-5
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
RATES OF REACTION & REVERSIBLE REACTIONS.
Environmental effects of fuels.
Effect of concentration on rate of a reaction
By the end of the lesson, the learner should be able to:
Outline some environmental effects of fuels.
Identify measures taken to reduce environmental
pollution.






Explain the effects of change of concentration of reactants on a reaction.
Q/A & open discussion.
Group experiments to investigate effect of concentration on rate of reaction using dil. HCl and magnesium ribbons.
Determine the time taken for reactions to be complete.
Calculation of concentration of HCl in moles per litre.
Discuss the observations and sketch illustrative graphs.
student book
Portions of 2M HCl diluted with different volumes of water,
Stopwatches.
K.L.B. BK IV
Pages 67-68
K.L.B. BK IV
Pages 73-74
10 1
RATES OF REACTION & REVERSIBLE REACTIONS.
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Effect of time of reaction on the rate of reaction.
Alkanols (Alcohols).
By the end of the lesson, the learner should be able to:
Explain how the rate or reaction changes as the reaction proceed
Identify the functional group of alkanols.
Explain formation of alkanol molecules.
Group experiments: investigate volume of gas evolved when magnesium reacts with dilute HCl.
Collect evolved gas and sketch and illustrative graphs.
Discuss the results.
Q/A: review alkanes, alkenes and alkynes.
Teacher exposes new concepts and links them with already known concepts.
Magnesium ribbons, stopwatches, conical flask.
100cm3 0.5M HCl, syringes, stoppers, tubes and connectors.
student book
K.L.B. BK IV
Pages 75-79
10 2
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Nomenclature of alkanols.
By the end of the lesson, the learner should be able to:
Name and draw the structure of simple alkanols.
Guided discovery of naming system for alkanols.
Draw and name structures of alkanols.
student book
K.L.B. BK IV
Pages 206-8
10 3
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Isomerism in alkanols.
By the end of the lesson, the learner should be able to:
Describe positional and chain isomerism in alkanols.
Explain formation of primary and secondary alkanols.
Q/A: review the terms positional and chain isomerism.
Brief discussion on isomerism.
Oral exercise: naming given organic compounds.
Written exercise: writing structural formulae for isomers of organic compounds of a given molecular formula.
student book
K.L.B. BK IV
Pages 208-10
10 4-5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Preparation of ethanol in the lab.
Physical properties of alkanols.
By the end of the lesson, the learner should be able to:
Describe preparation of ethanol in the laboratory.
Explain the physical properties of alkanols.
Group experiments / teacher demonstration.

Discuss the fermentation process.
Comparative evaluation of physical properties of alkanols.
Q/A & discussion on variation in physical properties of alkanols.
Calcium hydroxide solution, sugar solution, yeast.


student book
K.L.B. BK IV
Pages 210-11
K.L.B. BK IV
Page 212
11 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Chemical properties of alkanols.
Esters and esterification.
By the end of the lesson, the learner should be able to:
Describe some chemical reactions of alkanols.
Explain formation of esters.
Describe the esterification process.
Group experiments/ teacher demonstration to investigate combustion of ethanol and its reaction with metals.
Write corresponding chemical equations.
Teacher exposes and explains new concepts.
Assignment.
student book
K.L.B. BK IV
Pages 213-5
11 2
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Oxidation of ethanol. Uses of alkanols.
By the end of the lesson, the learner should be able to:
Explain oxidation of ethanol by an oxidizing agent.
State uses of alkanols.
Explain the effects of alcohol on human health
Q/A: review redox reactions, oxidizing and reducing agents.
Brief discussion: oxidation of ethanol using potassium (VII) manganate or potassium (VI) dichromate.
Write corresponding chemical equations.
Open discussion.

student book
K.L.B. BK IV
Pages 216-8
11 3
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Oxidation of ethanol. Uses of alkanols.
By the end of the lesson, the learner should be able to:
Explain oxidation of ethanol by an oxidizing agent.
State uses of alkanols.
Explain the effects of alcohol on human health
Q/A: review redox reactions, oxidizing and reducing agents.
Brief discussion: oxidation of ethanol using potassium (VII) manganate or potassium (VI) dichromate.
Write corresponding chemical equations.
Open discussion.

student book
K.L.B. BK IV
Pages 216-8
11 4-5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Alkanoic (Carboxylic Acids).
Nomenclature of alkanoic acids.
By the end of the lesson, the learner should be able to:
Identify the functional group of alkanoic (carboxylic) acids.
Explain formation of alkanoic acid molecule.

Name and draw the structure of simple alkanoic acids.

Q/A: review functional group of alkanols.

Brief discussion.
Guided discovery of the naming system for alkanoic acids.
student book
Chart: homologous series of alkanoic acids.
K.L.B. BK IV
Page 219
K.L.B. BK IV
Pages 219-221
12 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Lab preparation of ethanoic acid.
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of ethanoic acid.
Teacher demonstration: prepare ethanoic acid in the lab.

Brief discussion on preparation of ethanoic acid.
Concentrated H2SO4, potassium manganate
(VII) Crystals, water bath.
K.L.B. BK IV
Pages 221-223
12 2
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Physical properties of alkanoic acids.
By the end of the lesson, the learner should be able to:
Explain some physical properties of alkanoic acids.
Compare physical properties of some alkanoic acids.
Discuss the difference in physical properties among alkanoic acids.
student book
K.L.B. BK IV
Pages 223-4
12 3
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Chemical properties of alkanoic acids.
By the end of the lesson, the learner should be able to:
Explain some chemical properties of alkanoic acids.
Group experiment: investigate some chemical properties of ethanoic acid.
Carry out tests and record observations in a table.
Ethanoic acid, universal indicator, sodium carbonate, magnesium strip, ethanol, conc. H2SO4 and sodium hydroxide.
K.L.B. BK IV
Pages 224-5
12 4-5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Chemical properties & Uses of alkanoic acids.
Soap preparation in the lab.
Cleaning action of soap.
By the end of the lesson, the learner should be able to:
Write equations for chemical reactions involving acids.
State uses of alkanoic acids.
Describe soap preparation in the lab.
Describe the nature of a soap molecule.
Explain the mode of action in cleaning.
Review and discuss the observations above.
Write corresponding chemical equations.
Teacher elucidates uses of alkanoic acids.
Group experiments,
Answer questions based on the experiments already carried out.
Expository and descriptive approaches.
Answer oral questions.
student book
K.L.B. BK IV
Pages 225-7
K.L.B. BK IV
Pages 230-232
13

END OF TERM I EXAMINATION

14

CONTINUATION OF END TERM EXAMINATION, MARKING AND SCHOOL CLOSURE


Your Name Comes Here


Download

Feedback