Home






SCHEME OF WORK
Chemistry
Form 4 2025
TERM I
School




To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.











Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
1

OPENING AND REPORTING BACK TO SCHOOL

2

REVISION OF END OF TERM III 2024 AND OPENER EXAMS

3 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Alkanols (Alcohols).
Nomenclature of alkanols.
By the end of the lesson, the learner should be able to:
Identify the functional group of alkanols.
Explain formation of alkanol molecules.
Name and draw the structure of simple alkanols.
Q/A: review alkanes, alkenes and alkynes.
Teacher exposes new concepts and links them with already known concepts.
Guided discovery of naming system for alkanols.
Draw and name structures of alkanols.
student book
K.L.B. BK IV
Page 205
3 2
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Isomerism in alkanols.
By the end of the lesson, the learner should be able to:
Describe positional and chain isomerism in alkanols.
Explain formation of primary and secondary alkanols.
Q/A: review the terms positional and chain isomerism.
Brief discussion on isomerism.
Oral exercise: naming given organic compounds.
Written exercise: writing structural formulae for isomers of organic compounds of a given molecular formula.
student book
K.L.B. BK IV
Pages 208-10
3 3
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Preparation of ethanol in the lab.
Physical properties of alkanols.
By the end of the lesson, the learner should be able to:
Describe preparation of ethanol in the laboratory.
Explain the physical properties of alkanols.
Group experiments / teacher demonstration.
Discuss the fermentation process.
Comparative evaluation of physical properties of alkanols.
Q/A & discussion on variation in physical properties of alkanols.
Calcium hydroxide solution, sugar solution, yeast.
student book
K.L.B. BK IV
Pages 210-11
3 4-5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Chemical properties of alkanols.
Esters and esterification.
By the end of the lesson, the learner should be able to:
Describe some chemical reactions of alkanols.
Explain formation of esters.
Describe the esterification process.
Group experiments/ teacher demonstration to investigate combustion of ethanol and its reaction with metals.
Write corresponding chemical equations.

Teacher exposes and explains new concepts.

Assignment.
student book
K.L.B. BK IV
Pages 213-5
K.L.B. BK IV
Pages 215-6
4 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Oxidation of ethanol. Uses of alkanols.
Alkanoic (Carboxylic Acids).
By the end of the lesson, the learner should be able to:
Explain oxidation of ethanol by an oxidizing agent.
State uses of alkanols.
Explain the effects of alcohol on human health
Identify the functional group of alkanoic (carboxylic) acids.
Explain formation of alkanoic acid molecule.
Q/A: review redox reactions, oxidizing and reducing agents.
Brief discussion: oxidation of ethanol using potassium (VII) manganate or potassium (VI) dichromate.
Write corresponding chemical equations.
Open discussion.
Q/A: review functional group of alkanols.
Brief discussion.
student book
K.L.B. BK IV
Pages 216-8
4 2
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Nomenclature of alkanoic acids.
By the end of the lesson, the learner should be able to:
Name and draw the structure of simple alkanoic acids.

Guided discovery of the naming system for alkanoic acids.
Chart: homologous series of alkanoic acids.
K.L.B. BK IV
Pages 219-221
4 3
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Lab preparation of ethanoic acid.
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of ethanoic acid.
Teacher demonstration: prepare ethanoic acid in the lab.

Brief discussion on preparation of ethanoic acid.
Concentrated H2SO4, potassium manganate
(VII) Crystals, water bath.
K.L.B. BK IV
Pages 221-223
4 4-5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Physical properties of alkanoic acids.
Chemical properties of alkanoic acids.
Chemical properties & Uses of alkanoic acids.
By the end of the lesson, the learner should be able to:
Explain some physical properties of alkanoic acids.
Explain some chemical properties of alkanoic acids.
Write equations for chemical reactions involving acids.
State uses of alkanoic acids.
Compare physical properties of some alkanoic acids.
Discuss the difference in physical properties among alkanoic acids.

Group experiment: investigate some chemical properties of ethanoic acid.
Carry out tests and record observations in a table.
Review and discuss the observations above.
Write corresponding chemical equations.
Teacher elucidates uses of alkanoic acids.
student book
Ethanoic acid, universal indicator, sodium carbonate, magnesium strip, ethanol, conc. H2SO4 and sodium hydroxide.
student book
K.L.B. BK IV
Pages 223-4
K.L.B. BK IV
Pages 224-5
5 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Soap preparation in the lab.
Cleaning action of soap.
By the end of the lesson, the learner should be able to:
Describe soap preparation in the lab.
Describe the nature of a soap molecule.
Explain the mode of action in cleaning.
Group experiments,
Answer questions based on the experiments already carried out.
Expository and descriptive approaches.
Answer oral questions.
student book
K.L.B. BK IV
Pages 227-230
5 2
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Effects of hard / soft water on soap.
By the end of the lesson, the learner should be able to:
Explain the effects of hard/ soft water on soap.
Group experiments: form soap lather in different solutions.

Deduce the effects of hard/ soft water on soap.
Distilled water, tap water, rainwater, sodium chloride solution.
Calcium nitrate, Zinc Sulphate, etc.
K.L.B. BK IV
Pages 232-235
5 3
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Soapless detergents.
Polymers and polymerization.
By the end of the lesson, the learner should be able to:
Prepare soapless detergents in the lab.
State merits of soapless detergents over soaps.
Explain the concepts additional and condensation polymerization as methods of making synthetic polymers.
Identify some products of polymerization.
State merits and demerits of synthetic polymers over natural materials.
Teacher demonsration.
Brief discussion.
Teacher exposes and explains new concepts.
Detailed discussion.
Assignment.
student book
K.L.B. BK IV
Pages 235-238
5 4-5
ACIDS, BASES AND SALTS.
Strength of acids. Acids in aqueous form.
pH values of acids. Electrical conductivities of aqueous acids.
By the end of the lesson, the learner should be able to:


Define an acid in terms of hydrogen ions.

Explain strength of acids in aqueous form in terms of number of hydrogen ions present.
Determine strength of acids using pH values.

Determine strengths of acids by comparing their electrical conductivities.

Classify acids as either strong or weak in terms of partial dissociations in aqueous solutions.




Class experiments: investigate reactions of magnesium and zinc carbonate with different acids.
Make and record observations in tabular form.
Make deductions from the observations.
Write relevant chemical equations and ionic equations.
Detailed discussion leading to the definition of an acid and explanation of strength of an acid.

Q/A: review determination of strength of acids using a litmus paper and pH scale.
Class / group experiments: record colour of universal indicator in
2M HCl and 2M ethanoic acid.
Set up voltameters of 2M HCl and 2M ethanoic acid in turns.
Record amounts of current .
Discuss the observations.
Write corresponding ionic equations.




Magnesium strip, zinc carbonate,
2M HCl,
2M H2SO4,
2M ethanoic acid.
Universal
indicator,
2M HCl,
2M ethanoic acid,
dry cells,
carbon electrodes,
milli-ammeters,
wires, switches etc.




K.L.B. BK IV
Pages 1-4
K.L.B. BK IV
Pages 4-6
6 1
ACIDS, BASES AND SALTS.
Definition of a base in terms of hydroxide ions.
By the end of the lesson, the learner should be able to:
Define a base in terms of hydroxide ions.
Teacher demonstration:
Dissolve calcium hydroxide in water.
Carry out litmus test on the resulting solution.
Discuss the results; hence define a base in terms of hydroxide ions.
Red litmus paper, calcium hydroxide solid.
K.L.B. BK IV
Pages 6-7
6 2
ACIDS, BASES AND SALTS.
Neutralization reaction.
By the end of the lesson, the learner should be able to:
Determine the results of reaction of an acid and a base.
Add 1M HCl to an aqueous solution of Calcium hydroxide drop wise until colour, change of the universal indicator is noted.
Write ionic equation for the reaction.
1M HCl,
Calcium hydroxide,
universal indicator.
K.L.B. BK IV
Page 7
6 3
ACIDS, BASES AND SALTS.
Strength of bases.
Dissolving hydrogen chloride gas in water / methylbenzene.
By the end of the lesson, the learner should be able to:
Compare strengths of bases using pH values and electrical conductivity.
Classify bases/ alkali as either strong or weak in terms of complete / partial ionization.
Define a polar and a non-polar solvent.
Carry out pH tests of 2M NaOH and 2M ammonia solution using universal indicator solutions; and observe colour changes.
Carry out electrical conductivity tests of voltameters of the above solutions.
Discussion: relate number of hydroxide ions to pH values and electrical conductivity of bases.
Teacher demonstration:
Dissolving HCl gas in different solvents.
Discuss the observations.
Write down related balanced chemical equations.
2M NaOH,
2M ammonia solution, universal indicator solutions, dry cells,
carbon electrodes,
milliammeters,
wires, switches etc
Ammonia gas,
Methylbenzene, hydrogen chloride gas.
K.L.B. BK IV
Pages 7-9
6 4-5
ACIDS, BASES AND SALTS.
Dissolving ammonia gas in water/ methylbenzene.
Amphoteric oxides.
By the end of the lesson, the learner should be able to:
Investigate effect of a polar / non-polar solvent on ammonia gas.
Define an amphoteric oxide.
Identify some amphoteric oxides.
Carry out litmus tests on the resulting solution.
Make observations and deductions thereof.
Write down related balanced chemical equations.
Class experiment:
Carry out acid / base reactions with metal oxides.
Q/A: make deductions from the results.
Writing and balancing relevant equations.

Ammonia gas,
Methylbenzene.
2M Nitric acid
2M NaOH,
HNO3.
Amphoteric oxides.
K.L.B. BK IV
Pages 11-12
K.L.B. BK IV
Pages 12-14
7

MID TERM I EXAMS

8

MID TERM I BREAK

9 1
ACIDS, BASES AND SALTS.
Precipitation Reactions.
By the end of the lesson, the learner should be able to:
Define a precipitate.
Write ionic equations showing formation of precipitates.
Q/A: review definition of a salt.
Class experiment;
Add sodium carbonate or a suitable carbonate to various salt solutions containing Mg2+, Al3+, Ca2+, etc.
Make observations and discuss the results.

Soluble carbonates e.g. Na2CO3, K2CO3, (NH4)2CO3
Salt solutions containing Mg2+, Al3+, Ca2+, etc.
K.L.B. BK IV
Pages 14-16
9 2
ACIDS, BASES AND SALTS.
Solubility of chlorides sulphites and sulphates.
Equations for formation of insoluble chlorides, sulphites and sulphates.
By the end of the lesson, the learner should be able to:
Find out cations that form (in)soluble chlorides, sulphates and sulphites.
Write down equations for formation of insoluble chlorides, sulphites and sulphates.
Class experiments: measure 2cc of 0.1M solution containing Pb2+ into a test tube.
Add drops of 2M NaCl solution.
(Later 2M Sodium Sulphate and 2M Sodium Sulphate).
Warm the mixture and make observations.
Repeat the procedure using other salt solutions containing other ions.
Tabulate the results.
Q/A: review observations made in the above experiments.
Discuss the solubility of the cations.
Write relevant ionic equations.
0.1M solution containing Pb2+, 2M NaCl solution, 2M sodium sulphate, source of heating.
student book
K.L.B. BK IV
Pages 16-17
9 3
ACIDS, BASES AND SALTS.
Complex ions.
By the end of the lesson, the learner should be able to:
Explain formation of complex ions.
Add drops of 2M sodium hydroxide / 2M ammonia solution to a solution containing Mg2+, Zn2+, etc.

Make observations and discuss the results.
2M Sodium hydroxide (2M ammonia solution),
solution containing Mg2+, Zn2+, etc.
K.L.B. BK IV
Pages 18-20
9 4
ACIDS, BASES AND SALTS.
Solubility of a salt at a given temperature.
By the end of the lesson, the learner should be able to:
Define the term solubility.
Determine solubility of a given salt at room temperature.
Q/A: review the terms saturated, unsaturated solutions & crystallization.
Class experiment: determine mass of a solute that dissolves in 100cc of water at room temperature.
Suitable solutes.
K.L.B. BK IV
Pages 20-21
9 4-5
ACIDS, BASES AND SALTS.
Solubility of a salt at a given temperature.
Problems solving on solubility.
By the end of the lesson, the learner should be able to:
Define the term solubility.
Determine solubility of a given salt at room temperature.
Solve problems involving solubility of a solute in a solvent at a given temperature.
Q/A: review the terms saturated, unsaturated solutions & crystallization.
Class experiment: determine mass of a solute that dissolves in 100cc of water at room temperature.

Worked examples.
Supervised practice.
Written assignment.
Suitable solutes.
Evaporating dish, watch glass, heating source, thermometer.
K.L.B. BK IV
Pages 20-21
K.L.B. BK IV
Pages 21-22
10 1
ACIDS, BASES AND SALTS.
Effect of temperature on solubility of a solute in a solvent.
By the end of the lesson, the learner should be able to:
Investigate the effect of temperature on solubility of a solute in a solvent.
Experiments involving solubility of KClO3 at different temperatures.
Note temperatures at which crystallization occurs.
Oral questions and discussion.
KClO3 thermometers, source of heat.
K.L.B. BK IV
Pages 22-25
10 2
ACIDS, BASES AND SALTS.
Effects of various salts on soap.
Removal of hardness of water.
By the end of the lesson, the learner should be able to:
Determine the effects of various salts on soap.
Identify ions for hardness of water.
Identify methods of removing hardness of water.
State merits & demerits of hard water.
Group experiments: form soap lather in distilled water, tap water, rainwater, dilute solution of sodium chloride and solutions containing Ca2+ and Zn2+.
Note volume of soap that forms lather readily.
Review results of above experiments.
Probing questions & brief discussion.
Assignment.
distilled water, tap water, rainwater, dilute solution of sodium chloride and solutions containing Ca2+ and Zn2+.
student book
K.L.B. BK IV
Pages 25-27
10 3
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Endothermic and Exothermic Reactions.
By the end of the lesson, the learner should be able to:






To differentiate between endothermic & exothermic reactions.






Investigate temperature changes in solution formation.

Obtain changes in temperature when ammonium nitrate and sodium hydroxide are dissolved in water, one at a time.






Ammonium nitrate,
Sodium hydroxide, thermometers.
K.L.B. BK IV
Pages 32-33
10 4-5
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Energy level diagrams.
Enthalpy Notation. Change of state.
CAT
By the end of the lesson, the learner should be able to:
Represent endothermic reactions with exothermic reactions with energy level diagrams.

Define the term enthalpy.
Distinguish positive enthalpy change from negative enthalpy change.
Determine the M.P/ B.P of a pure substance.
Probing questions on relative energies of reactants and products in endothermic and exothermic and endothermic reactions.
Q/A and brief discussion.
Class experiments: determine B.P of pure water/ M.P of naphthalene / ice.
Use experimental results to plot temperature-time graphs.
Explain the shape of the graphs.
Q/A: review kinetic theory of matter.
Apply the theory to explain the shape of the graph, and nature of bonding in substances.
student book
Ice, naphthalene, thermometers, graph papers.
K.L.B. BK IV
Pages 33-35
K.L.B. BK IV
Pages 35-39
11 1
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of solution.
By the end of the lesson, the learner should be able to:
Determine molar heat of solution of given substances.
Dissolve known masses of ammonia nitrate / sodium hydroxide in known volumes of water.
Determine temperature changes.
Calculate molar heat of solution. Supervised practice.

Ammonia nitrate / sodium hydroxide, thermometers.
K.L.B. BK IV
Pages 40-41
11 2
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of solution of H2SO4.
By the end of the lesson, the learner should be able to:
Determine molar heat of solution of H2SO4.
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature.
Work out the molar heat of solution of H2SO4.
Conc. H2SO4, thermometers.
K.L.B. BK IV
Pages 42-45
11 3
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of solution of H2SO4.
By the end of the lesson, the learner should be able to:
Determine molar heat of solution of H2SO4.
Dissolve some known volume of conc. H2SO4 in a given volume of water.
Note the change in temperature.
Work out the molar heat of solution of H2SO4.
Conc. H2SO4, thermometers.
K.L.B. BK IV
Pages 42-45
11 4-5
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Enthalpy of combustion. Enthalpy of combustion.
Molar heat of displacement of ions.
By the end of the lesson, the learner should be able to:
Define the term enthalpy of combustion.
Determine the enthalpy of combustion of ethanol.
Explain why actual heats of combustion are usually lower than the theoretical values.

Define the term molar heat of solution of displacement of ions.
Determine the molar heat of solution of displacement of ions.
Group experiments / teacher demonstration.

Obtain and record results.


Work out calculations.
Group experiments/ teacher demonstration.
Note steady temperature of solutions formed when zinc/ iron / magnesium reacts with copper sulphate solution.
Work out the molar heat of displacement of a substance from a solution of its ions.
Ethanol, distilled water, thermometer, clear wick, tripod stand and wire gauze.
Zinc, iron, magnesium, copper sulphate solution.
K.L.B. BK IV
Pages 45-48
K.L.B. BK IV
Pages 48-50
12 1
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Molar heat of solution of neutralization.
By the end of the lesson, the learner should be able to:
Define the term neutralization.
Determine the molar heat of neutralization of HCl with NaOH.
Class experiments:
Neutralize 2M HCl of known volume with a determined volume of 1M / 2M sodium hydroxide.
Note highest temperature of the solution.
Work out the molar heat of neutralization.
Solve other related problems.
Assignment.
2M HCl of known volume, 1M / 2M sodium hydroxide.
K.L.B. BK IV
Pages 50-53
12 2
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Standard enthalpy changes.
By the end of the lesson, the learner should be able to:
Define the term standard enthalpy change.
Denote standard enthalpy change with the correct notation.
Exposition & brief discussion.
student book
K.L.B. BK IV
Pages 54-56
12 3
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Hess?s Law.
By the end of the lesson, the learner should be able to:
State Hess?s law.

Solve problems related to Hess?s law.
Detailed discussion & guided discovery of the law.
Illustrations of energy cycles and energy levels leading to Hess?s law.
Worked examples.
Supervised practice
Written assignment.
student book
K.L.B. BK IV
Pages 56-57
12 4-5
ENERGY CHANGES IN PHYSICAL & CHEMICAL PROCESSES.
Heat of solution hydration energy and lattice energy.
Heat values of fuels.
Environmental effects of fuels.
By the end of the lesson, the learner should be able to:
Define the terms lattice energy and hydration energy.
Explain the relationship between heat of solution, hydration energy.
Solve related problems.
Define the term fuel.
Describe energy changes when a fuel undergoes combustion.
Outline factors considered when choosing a suitable fuel.
Outline some environmental effects of fuels.
Identify measures taken to reduce environmental
pollution.
Exposition of new concepts.
Guided discovery of the relationship between heat solution hydration energy and lattice energy.
Worked examples.
Assignment.
Probing questions and brief discussion.
Q/A & open discussion.
student book
K.L.B. BK IV
Pages 60-64
K.L.B. BK IV
Pages 67-68
13

END OF TERM I EXAMINATION


Your Name Comes Here


Download

Feedback