If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
REVISION OF END TERM EXAMINATION |
|||||||
1 | 5 |
Matrices and Transformation
|
Matrices of Transformation
|
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
1 | 6 |
Matrices and Transformation
|
Identifying Common Transformation Matrices
Finding the Matrix of a Transformation Using the Unit Square Method |
By the end of the
lesson, the learner
should be able to:
-Identify matrices for reflection, rotation, enlargement -Describe transformations represented by given matrices -Apply identity matrix and understand its effect -Distinguish between different types of transformations |
-Use unit square drawn on paper to identify transformations -Practice with specific matrices like (0 1; 1 0), (-1 0; 0 1) -Draw objects and images under various transformations -Q&A on transformation properties |
Exercise books
-Manila paper -Ruler -String -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
1 | 7 |
Matrices and Transformation
|
Successive Transformations
Matrix Multiplication for Combined Transformations Single Matrix for Successive Transformations |
By the end of the
lesson, the learner
should be able to:
-Understand the concept of successive transformations -Apply transformations in correct order -Recognize that order matters in matrix multiplication -Perform multiple transformations step by step |
-Demonstrate successive transformations with paper cutouts -Practice applying transformations in sequence -Compare results when order is changed -Work through step-by-step examples |
Exercise books
-Manila paper -Ruler -Coloured pencils -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 16-24
|
|
2 | 1 |
Matrices and Transformation
|
Inverse of a Transformation
Properties of Inverse Transformations |
By the end of the
lesson, the learner
should be able to:
-Define inverse transformation conceptually -Find inverse matrices using algebraic methods -Apply inverse transformations to return objects to original position -Verify inverse relationships using matrix multiplication |
-Demonstrate inverse transformations geometrically -Practice finding inverse matrices algebraically -Verify that A × A⁻¹ = I -Apply inverse transformations to solve problems |
Exercise books
-Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
2 | 2 |
Matrices and Transformation
|
Area Scale Factor and Determinant
Shear Transformations |
By the end of the
lesson, the learner
should be able to:
-Establish relationship between area scale factor and determinant -Calculate area scale factors for transformations -Apply determinant to find area changes -Solve problems involving area transformations |
-Measure areas of objects and images using grid paper -Calculate determinants and compare with area ratios -Practice with various transformation types -Verify the relationship: ASF = |
det A
Exercise books -Cardboard pieces -Manila paper -Ruler |
|
|
2 | 3 |
Matrices and Transformation
|
Stretch Transformations
|
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and scale factors -Distinguish between one-way and two-way stretches -Construct matrices for stretch transformations -Apply stretch transformations to solve problems |
-Demonstrate stretch using rubber bands and paper -Practice with x-axis and y-axis invariant stretches -Construct stretch matrices systematically -Compare stretches with enlargements |
Exercise books
-Rubber bands -Manila paper -Ruler |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
2 | 4 |
Matrices and Transformation
|
Combined Shear and Stretch Problems
Isometric and Non-isometric Transformations |
By the end of the
lesson, the learner
should be able to:
-Apply shear and stretch transformations in combination -Solve complex transformation problems -Identify transformation types from matrices -Calculate areas under shear and stretch transformations |
-Work through complex transformation sequences -Practice identifying transformation types -Calculate area changes under different transformations -Solve real-world applications |
Exercise books
-Manila paper -Ruler -Chalk/markers -Paper cutouts |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
2 | 5 |
Statistics II
|
Introduction to Advanced Statistics
|
By the end of the
lesson, the learner
should be able to:
-Review measures of central tendency from Form 2 -Identify limitations of simple mean calculations -Understand need for advanced statistical methods -Recognize patterns in large datasets |
-Review mean, median, mode from previous work -Discuss challenges with large numbers -Examine real data from Kenya (population, rainfall) -Q&A on statistical applications in daily life |
Exercise books
-Manila paper -Real data examples -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
2 | 6 |
Statistics II
|
Working Mean Concept
Mean Using Working Mean - Simple Data |
By the end of the
lesson, the learner
should be able to:
-Define working mean (assumed mean) -Explain why working mean simplifies calculations -Identify appropriate working mean values -Apply working mean to reduce calculation errors |
-Demonstrate calculation difficulties with large numbers -Show how working mean simplifies arithmetic -Practice selecting suitable working means -Compare results with and without working mean |
Exercise books
-Manila paper -Sample datasets -Chalk/markers -Student data |
KLB Secondary Mathematics Form 4, Pages 39-42
|
|
2 | 7 |
Statistics II
|
Mean Using Working Mean - Frequency Tables
|
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for frequency data -Apply working mean to discrete frequency distributions -Use the formula with frequencies correctly -Solve real-world problems with frequency data |
-Demonstrate with family size data from local community -Practice calculating fx and fd systematically -Work through examples step-by-step -Students practice with their own collected data |
Exercise books
-Manila paper -Community data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
3 | 1 |
Statistics II
|
Mean for Grouped Data Using Working Mean
Advanced Working Mean Techniques |
By the end of the
lesson, the learner
should be able to:
-Calculate mean for grouped continuous data -Select appropriate working mean for grouped data -Use midpoints of class intervals correctly -Apply working mean formula to grouped data |
-Use height/weight data of students in class -Practice finding midpoints of class intervals -Work through complex calculations step by step -Students practice with agricultural production data |
Exercise books
-Manila paper -Real datasets -Chalk/markers -Economic data |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
3 | 2 |
Statistics II
|
Introduction to Quartiles, Deciles, Percentiles
|
By the end of the
lesson, the learner
should be able to:
-Define quartiles, deciles, and percentiles -Understand how they divide data into parts -Explain the relationship between these measures -Identify their importance in data analysis |
-Use physical demonstration with student heights -Arrange 20 students by height to show quartiles -Explain percentile ranks in exam results -Discuss applications in grading systems |
Exercise books
-Manila paper -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
3 | 3 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers -Grade data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
3 | 4 |
Statistics II
|
Deciles and Percentiles Calculations
|
By the end of the
lesson, the learner
should be able to:
-Calculate specific deciles and percentiles -Apply interpolation formulas for deciles/percentiles -Interpret decile and percentile positions -Use these measures for comparative analysis |
-Calculate specific percentiles for class test scores -Find deciles for sports performance data -Compare students' positions using percentiles -Practice with national examination statistics |
Exercise books
-Manila paper -Performance data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
3 | 5 |
Statistics II
|
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives) |
By the end of the
lesson, the learner
should be able to:
-Construct cumulative frequency tables -Understand "less than" cumulative frequencies -Plot cumulative frequency against class boundaries -Identify the characteristic S-shape of ogives |
-Create cumulative frequency table with class data -Plot points on manila paper grid -Join points to form smooth curve -Discuss properties of ogive curves |
Exercise books
-Manila paper -Ruler -Class data -Pencils |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
3 | 6 |
Statistics II
|
Reading Values from Ogives
|
By the end of the
lesson, the learner
should be able to:
-Read median from cumulative frequency curve -Find quartiles using ogive -Estimate any percentile from the curve -Interpret readings in real-world context |
-Demonstrate reading techniques on large ogive -Practice finding median position (n/2) -Read quartile positions systematically -Students practice reading their own curves |
Exercise books
-Manila paper -Completed ogives -Ruler |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
3 | 7 |
Statistics II
|
Applications of Ogives
Introduction to Measures of Dispersion |
By the end of the
lesson, the learner
should be able to:
-Use ogives to solve real-world problems -Find number of values above/below certain points -Calculate percentage of data in given ranges -Compare different datasets using ogives |
-Solve problems about pass rates in examinations -Find how many students scored above average -Calculate percentages for different grade ranges -Use agricultural production data for analysis |
Exercise books
-Manila paper -Real problem datasets -Ruler -Comparative datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
4 | 1 |
Statistics II
|
Range and Interquartile Range
|
By the end of the
lesson, the learner
should be able to:
-Calculate range for different datasets -Find interquartile range (Q3 - Q1) -Calculate quartile deviation (semi-interquartile range) -Compare advantages and limitations of each measure |
-Calculate range for student heights in class -Find IQR for the same data -Discuss effect of outliers on range -Compare IQR stability with range |
Exercise books
-Manila paper -Student data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
4 | 2 |
Statistics II
|
Mean Absolute Deviation
Introduction to Variance |
By the end of the
lesson, the learner
should be able to:
-Calculate mean absolute deviation -Use absolute values correctly in calculations -Understand concept of average distance from mean -Apply MAD to compare variability in datasets |
-Calculate MAD for class test scores -Practice with absolute value calculations -Compare MAD values for different subjects -Interpret MAD in context of data spread |
Exercise books
-Manila paper -Test score data -Chalk/markers -Simple datasets |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
4 | 3 |
Statistics II
|
Variance Using Alternative Formula
|
By the end of the
lesson, the learner
should be able to:
-Apply the formula: σ² = (Σx²/n) - x̄² -Use alternative variance formula efficiently -Compare computational methods -Solve variance problems for frequency data |
-Demonstrate both variance formulas -Show computational advantages of alternative formula -Practice with frequency tables -Students choose efficient method |
Exercise books
-Manila paper -Frequency data -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
4 | 4 |
Statistics II
|
Standard Deviation Calculations
Standard Deviation for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Calculate standard deviation as square root of variance -Apply standard deviation to ungrouped data -Use standard deviation to compare datasets -Interpret standard deviation in practical contexts |
-Calculate SD for student exam scores -Compare SD values for different subjects -Interpret what high/low SD means -Use SD to identify consistent performance |
Exercise books
-Manila paper -Exam score data -Chalk/markers -Agricultural data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
4 | 5 |
Statistics II
|
Advanced Standard Deviation Techniques
|
By the end of the
lesson, the learner
should be able to:
-Apply transformation properties of standard deviation -Use coding with class width division -Solve problems with multiple transformations -Verify results using different methods |
-Demonstrate coding transformations -Show how SD changes with data transformations -Practice reverse calculations -Verify using alternative methods |
Exercise books
-Manila paper -Transformation examples -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
4 | 6 |
Trigonometry III
|
Review of Basic Trigonometric Ratios
Deriving the Identity sin²θ + cos²θ = 1 |
By the end of the
lesson, the learner
should be able to:
-Recall sin, cos, tan from right-angled triangles -Apply Pythagoras theorem with trigonometry -Use basic trigonometric ratios to solve problems -Establish relationship between trigonometric ratios |
-Review right-angled triangle ratios from Form 2 -Practice calculating unknown sides and angles -Work through examples using SOH-CAH-TOA -Solve simple practical problems |
Exercise books
-Manila paper -Rulers -Calculators (if available) -Unit circle diagrams -Calculators |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
4 | 7 |
Trigonometry III
|
Applications of sin²θ + cos²θ = 1
|
By the end of the
lesson, the learner
should be able to:
-Solve problems using the fundamental identity -Find missing trigonometric ratios given one ratio -Apply identity to simplify trigonometric expressions -Use identity in geometric problem solving |
-Work through examples finding cos when sin is given -Practice simplifying complex trigonometric expressions -Solve problems involving unknown angles -Apply to real-world navigation problems |
Exercise books
-Manila paper -Trigonometric tables -Real-world examples |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
5 | 1 |
Trigonometry III
|
Additional Trigonometric Identities
Introduction to Waves |
By the end of the
lesson, the learner
should be able to:
-Derive and apply tan θ = sin θ/cos θ -Use reciprocal ratios (sec, cosec, cot) -Apply multiple identities in problem solving -Verify trigonometric identities algebraically |
-Demonstrate relationship between tan, sin, cos -Introduce reciprocal ratios with examples -Practice identity verification techniques -Solve composite identity problems |
Exercise books
-Manila paper -Identity reference sheet -Calculators -String/rope -Wave diagrams |
KLB Secondary Mathematics Form 4, Pages 99-103
|
|
5 | 2 |
Trigonometry III
|
Sine and Cosine Waves
|
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = sin x and y = cos x -Identify amplitude and period of basic functions -Compare sine and cosine wave patterns -Read values from trigonometric graphs |
-Plot sin x and cos x on same axes using manila paper -Mark key points (0°, 90°, 180°, 270°, 360°) -Measure and compare wave characteristics -Practice reading values from completed graphs |
Exercise books
-Manila paper -Rulers -Graph paper (if available) |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
5 | 3 |
Trigonometry III
|
Transformations of Sine Waves
Period Changes in Trigonometric Functions |
By the end of the
lesson, the learner
should be able to:
-Understand effect of coefficient on amplitude -Plot graphs of y = k sin x for different values of k -Compare transformed waves with basic sine wave -Apply amplitude changes to real situations |
-Plot y = 2 sin x, y = 3 sin x on manila paper -Compare amplitudes with y = sin x -Demonstrate stretching effect of coefficient -Apply to sound volume or signal strength examples |
Exercise books
-Manila paper -Colored pencils -Rulers -Period calculation charts |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
5 | 4 |
Trigonometry III
|
Combined Amplitude and Period Transformations
|
By the end of the
lesson, the learner
should be able to:
-Plot graphs of y = a sin(bx) functions -Identify both amplitude and period changes -Solve problems with multiple transformations -Apply to complex wave phenomena |
-Plot y = 2 sin(3x), y = 3 sin(x/2) on manila paper -Calculate both amplitude and period for each function -Compare multiple transformed waves -Apply to radio waves or tidal patterns |
Exercise books
-Manila paper -Rulers -Transformation examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
5 | 5 |
Trigonometry III
|
Phase Angles and Wave Shifts
General Trigonometric Functions |
By the end of the
lesson, the learner
should be able to:
-Understand concept of phase angle -Plot graphs of y = sin(x + θ) functions -Identify horizontal shifts in wave patterns -Apply phase differences to wave analysis |
-Plot y = sin(x + 45°), y = sin(x - 30°) -Demonstrate horizontal shifting of waves -Compare leading and lagging waves -Apply to electrical circuits or sound waves |
Exercise books
-Manila paper -Colored pencils -Phase shift examples -Rulers -Complex function examples |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
5 | 6 |
Trigonometry III
|
Cosine Wave Transformations
|
By the end of the
lesson, the learner
should be able to:
-Apply transformations to cosine functions -Plot y = a cos(bx + c) functions -Compare cosine and sine transformations -Use cosine functions in modeling |
-Plot various cosine transformations on manila paper -Compare with equivalent sine transformations -Practice identifying cosine wave parameters -Model temperature variations using cosine |
Exercise books
-Manila paper -Rulers -Temperature data |
KLB Secondary Mathematics Form 4, Pages 103-109
|
|
5 | 7 |
Trigonometry III
|
Introduction to Trigonometric Equations
Solving Basic Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Understand concept of trigonometric equations -Identify that trig equations have multiple solutions -Solve simple equations like sin x = 0.5 -Find all solutions in given ranges |
-Demonstrate using unit circle or graphs -Show why sin x = 0.5 has multiple solutions -Practice finding principal values -Use graphs to identify all solutions in range |
Exercise books
-Manila paper -Unit circle diagrams -Trigonometric tables -Calculators -Solution worksheets |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
6 | 1 |
Trigonometry III
|
Quadratic Trigonometric Equations
|
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin²x - sin x = 0 -Apply factoring techniques to trigonometric equations -Use substitution methods for complex equations -Find all solutions systematically |
-Demonstrate substitution method (let y = sin x) -Factor quadratic expressions in trigonometry -Solve resulting quadratic equations -Back-substitute to find angle solutions |
Exercise books
-Manila paper -Factoring techniques -Substitution examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
6 | 2 |
Trigonometry III
|
Equations Involving Multiple Angles
Using Graphs to Solve Trigonometric Equations |
By the end of the
lesson, the learner
should be able to:
-Solve equations like sin(2x) = 0.5 -Handle double and triple angle cases -Find solutions for compound angle equations -Apply to periodic motion problems |
-Work through sin(2x) = 0.5 systematically -Show relationship between 2x solutions and x solutions -Practice with cos(3x) and tan(x/2) equations -Apply to pendulum and rotation problems |
Exercise books
-Manila paper -Multiple angle examples -Real applications -Rulers -Graphing examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
6 | 3 |
Trigonometry III
|
Trigonometric Equations with Identities
|
By the end of the
lesson, the learner
should be able to:
-Use trigonometric identities to solve equations -Apply sin²θ + cos²θ = 1 in equation solving -Convert between different trigonometric functions -Solve equations using multiple identities |
-Solve equations using fundamental identity -Convert tan equations to sin/cos form -Practice identity-based equation solving -Work through complex multi-step problems |
Exercise books
-Manila paper -Identity reference sheets -Complex examples |
KLB Secondary Mathematics Form 4, Pages 109-112
|
|
6 | 4 |
Three Dimensional Geometry
|
Introduction to 3D Concepts
Properties of Common Solids |
By the end of the
lesson, the learner
should be able to:
-Distinguish between 1D, 2D, and 3D objects -Identify vertices, edges, and faces of 3D solids -Understand concepts of points, lines, and planes in space -Recognize real-world 3D objects and their properties |
-Use classroom objects to demonstrate dimensions -Count vertices, edges, faces of cardboard models -Identify 3D shapes in school environment -Discuss difference between area and volume |
Exercise books
-Cardboard boxes -Manila paper -Real 3D objects -Cardboard -Scissors -Tape/glue |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
6 | 5 |
Three Dimensional Geometry
|
Understanding Planes in 3D Space
|
By the end of the
lesson, the learner
should be able to:
-Define planes and their properties in 3D -Identify parallel and intersecting planes -Understand that planes extend infinitely -Recognize planes formed by faces of solids |
-Use books/boards to represent planes -Demonstrate parallel planes using multiple books -Show intersecting planes using book corners -Identify planes in classroom architecture |
Exercise books
-Manila paper -Books/boards -Classroom examples |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
6 | 6 |
Three Dimensional Geometry
|
Lines in 3D Space
Introduction to Projections |
By the end of the
lesson, the learner
should be able to:
-Understand different types of lines in 3D -Identify parallel, intersecting, and skew lines -Recognize that skew lines don't intersect and aren't parallel -Find examples of different line relationships |
-Use rulers/sticks to demonstrate line relationships -Show parallel lines using parallel rulers -Demonstrate skew lines using classroom edges -Practice identifying line relationships in models |
Exercise books
-Rulers/sticks -3D models -Manila paper -Light source |
KLB Secondary Mathematics Form 4, Pages 113-115
|
|
6 | 7 |
Three Dimensional Geometry
|
Angle Between Line and Plane - Concept
|
By the end of the
lesson, the learner
should be able to:
-Define angle between line and plane -Understand that angle is measured with projection -Identify the projection of line on plane -Recognize when line is perpendicular to plane |
-Demonstrate using stick against book (plane) -Show that angle is with projection, not plane itself -Use protractor to measure angles with projections -Identify perpendicular lines to planes |
Exercise books
-Manila paper -Protractor -Rulers/sticks |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
7 | 1 |
Three Dimensional Geometry
|
Calculating Angles Between Lines and Planes
Advanced Line-Plane Angle Problems |
By the end of the
lesson, the learner
should be able to:
-Calculate angles using right-angled triangles -Apply trigonometry to 3D angle problems -Use Pythagoras theorem in 3D contexts -Solve problems involving cuboids and pyramids |
-Work through step-by-step calculations -Use trigonometric ratios in 3D problems -Practice with cuboid diagonal problems -Apply to pyramid and cone angle calculations |
Exercise books
-Manila paper -Calculators -3D problem diagrams -Real scenarios -Problem sets |
KLB Secondary Mathematics Form 4, Pages 115-123
|
|
7 | 2 |
Three Dimensional Geometry
|
Introduction to Plane-Plane Angles
|
By the end of the
lesson, the learner
should be able to:
-Define angle between two planes -Understand concept of dihedral angles -Identify line of intersection of two planes -Find perpendiculars to intersection line |
-Use two books to demonstrate intersecting planes -Show how planes meet along an edge -Identify dihedral angles in classroom -Demonstrate using folded paper |
Exercise books
-Manila paper -Books -Folded paper |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
7 | 3 |
Three Dimensional Geometry
|
Finding Angles Between Planes
Complex Plane-Plane Angle Problems |
By the end of the
lesson, the learner
should be able to:
-Construct perpendiculars to find plane angles -Apply trigonometry to calculate dihedral angles -Use right-angled triangles in plane intersection -Solve angle problems in prisms and pyramids |
-Work through construction method step-by-step -Practice finding intersection lines first -Calculate angles in triangular prisms -Apply to roof and building angle problems |
Exercise books
-Manila paper -Protractor -Building examples -Complex 3D models -Architecture examples |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
7 | 4 |
Three Dimensional Geometry
|
Practical Applications of Plane Angles
|
By the end of the
lesson, the learner
should be able to:
-Apply plane angles to real-world problems -Solve engineering and construction problems -Calculate angles in roof structures -Use in navigation and surveying contexts |
-Calculate roof pitch angles -Solve bridge construction angle problems -Apply to mining and tunnel excavation -Use in aerial navigation problems |
Exercise books
-Manila paper -Real engineering data -Construction examples |
KLB Secondary Mathematics Form 4, Pages 123-128
|
|
7 | 5 |
Three Dimensional Geometry
|
Understanding Skew Lines
Angle Between Skew Lines |
By the end of the
lesson, the learner
should be able to:
-Define skew lines and their properties -Distinguish skew lines from parallel/intersecting lines -Identify skew lines in 3D models -Understand that skew lines exist only in 3D |
-Use classroom edges to show skew lines -Demonstrate with two rulers in space -Identify skew lines in building frameworks -Practice recognition in various 3D shapes |
Exercise books
-Manila paper -Rulers -Building frameworks -Translation examples |
KLB Secondary Mathematics Form 4, Pages 128-135
|
|
7 | 6 |
Three Dimensional Geometry
|
Advanced Skew Line Problems
|
By the end of the
lesson, the learner
should be able to:
-Solve complex skew line angle calculations -Apply to engineering and architectural problems -Use systematic approach for difficult problems -Combine with other 3D geometric concepts |
-Work through power line and cable problems -Solve bridge and tower construction angles -Practice with space frame structures -Apply to antenna and communication tower problems |
Exercise books
-Manila paper -Engineering examples -Structure diagrams |
KLB Secondary Mathematics Form 4, Pages 128-135
|
|
7 | 7 |
Three Dimensional Geometry
|
Distance Calculations in 3D
Volume and Surface Area Applications |
By the end of the
lesson, the learner
should be able to:
-Calculate distances between points in 3D -Find shortest distances between lines and planes -Apply 3D Pythagoras theorem -Use distance formula in coordinate geometry |
-Calculate space diagonals in cuboids -Find distances from points to planes -Apply 3D distance formula systematically -Solve minimum distance problems |
Exercise books
-Manila paper -Distance calculation charts -3D coordinate examples -Volume formulas -Real containers |
KLB Secondary Mathematics Form 4, Pages 115-135
|
|
8 |
MIDTERM BREAK |
|||||||
9 | 1 |
Three Dimensional Geometry
|
Coordinate Geometry in 3D
|
By the end of the
lesson, the learner
should be able to:
-Extend coordinate geometry to three dimensions -Plot points in 3D coordinate system -Calculate distances and angles using coordinates -Apply vector concepts to 3D problems |
-Set up 3D coordinate system using room corners -Plot simple points in 3D space -Calculate distances using coordinate formula -Introduce basic vector concepts |
Exercise books
-Manila paper -3D coordinate grid -Room corner reference |
KLB Secondary Mathematics Form 4, Pages 115-135
|
|
9 | 2 |
Three Dimensional Geometry
Compound Proportion and Rates of Work |
Integration with Trigonometry
Compound Proportions |
By the end of the
lesson, the learner
should be able to:
-Apply trigonometry extensively to 3D problems -Use multiple trigonometric ratios in solutions -Combine trigonometry with 3D geometric reasoning -Solve complex problems requiring trig and geometry |
-Work through problems requiring sin, cos, tan -Use trigonometric identities in 3D contexts -Practice angle calculations in pyramids -Apply to navigation and astronomy problems |
Exercise books
-Manila paper -Trigonometric tables -Astronomy examples Chalk and blackboard, local business examples, calculators if available, exercise books |
KLB Secondary Mathematics Form 4, Pages 115-135
|
|
9 | 3 |
Compound Proportion and Rates of Work
|
Compound Proportions applications
|
By the end of the
lesson, the learner
should be able to:
Find the compound proportions Apply compound proportions to complex problems Handle multi-step compound proportion scenarios Solve real-world compound proportion problems |
Q/A on advanced compound proportion using complex scenarios
Discussions on multi-variable relationships using practical contexts Solving challenging compound problems using systematic approaches Demonstrations using construction and farming examples Explaining practical applications using community-based scenarios |
Chalk and blackboard, construction/farming examples, exercise books
|
KLB Mathematics Book Three Pg 290-291
|
|
9 | 4 |
Compound Proportion and Rates of Work
|
Proportional Parts
Proportional Parts applications |
By the end of the
lesson, the learner
should be able to:
Calculate the proportional parts Understand proportional division concepts Apply proportional parts to sharing problems Solve distribution problems using proportional methods |
Q/A on proportional sharing using practical examples
Discussions on fair distribution using ratio concepts Solving proportional parts problems using systematic division Demonstrations using sharing scenarios and inheritance examples Explaining proportional distribution using logical reasoning |
Chalk and blackboard, sharing demonstration materials, exercise books
Chalk and blackboard, business partnership examples, exercise books |
KLB Mathematics Book Three Pg 291-293
|
|
9 | 5 |
Compound Proportion and Rates of Work
|
Rates of Work
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Understand work rate relationships Apply time-work-efficiency concepts Solve basic rate of work problems |
Q/A on work rate calculation using practical examples
Discussions on efficiency and time relationships using work scenarios Solving basic rate of work problems using systematic methods Demonstrations using construction and labor examples Explaining work rate concepts using practical work situations |
Chalk and blackboard, work scenario examples, exercise books
|
KLB Mathematics Book Three Pg 294-295
|
|
9 | 6 |
Compound Proportion and Rates of Work
Graphical Methods |
Rates of Work and Mixtures
Tables of given relations |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of work Apply work rates to complex scenarios Handle mixture problems and combinations Solve advanced rate and mixture problems |
Q/A on advanced work rates using complex scenarios
Discussions on mixture problems using practical examples Solving challenging rate and mixture problems using systematic approaches Demonstrations using cooking, construction, and manufacturing examples Explaining mixture concepts using practical applications |
Chalk and blackboard, mixture demonstration materials, exercise books
Chalk and blackboard, ruled paper for tables, exercise books |
KLB Mathematics Book Three Pg 295-296
|
|
9 | 7 |
Graphical Methods
|
Graphs of given relations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of given relations Plot points accurately on coordinate systems Connect points to show relationships Interpret graphs from given data |
Q/A on graph plotting using coordinate methods
Discussions on point plotting and curve drawing Solving graph construction problems using systematic plotting Demonstrations using coordinate systems and curve sketching Explaining graph interpretation using visual analysis |
Chalk and blackboard, graph paper or grids, rulers, exercise books
|
KLB Mathematics Book Three Pg 300
|
|
10 | 1 |
Graphical Methods
|
Tables and graphs integration
Introduction to cubic equations |
By the end of the
lesson, the learner
should be able to:
Draw tables and graphs of given relations Integrate table construction with graph plotting Analyze relationships using both methods Compare tabular and graphical representations |
Q/A on integrated table-graph construction using comprehensive methods
Discussions on data flow from tables to graphs Solving integrated problems using systematic approaches Demonstrations using complete data analysis procedures Explaining relationship analysis using combined methods |
Chalk and blackboard, graph paper, data examples, exercise books
Chalk and blackboard, cubic function examples, exercise books |
KLB Mathematics Book Three Pg 299-300
|
|
10 | 2 |
Graphical Methods
|
Graphical solution of cubic equations
|
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Plot cubic curves accurately Use graphs to solve cubic equations Find roots using graphical methods |
Q/A on cubic curve plotting using systematic point plotting
Discussions on curve characteristics and root finding Solving cubic graphing problems using careful plotting Demonstrations using cubic curve construction Explaining root identification using graph analysis |
Chalk and blackboard, graph paper, cubic equation examples, exercise books
|
KLB Mathematics Book Three Pg 302-304
|
|
10 | 3 |
Graphical Methods
|
Advanced cubic solutions
Introduction to rates of change |
By the end of the
lesson, the learner
should be able to:
Draw graphs of cubic equations Apply graphical methods to complex cubic problems Handle multiple root scenarios Verify solutions using graphical analysis |
Q/A on advanced cubic graphing using complex examples
Discussions on multiple root identification using graph analysis Solving challenging cubic problems using systematic methods Demonstrations using detailed cubic constructions Explaining verification methods using graphical checking |
Chalk and blackboard, advanced graph examples, exercise books
Chalk and blackboard, rate calculation examples, exercise books |
KLB Mathematics Book Three Pg 302-304
|
|
10 | 4 |
Graphical Methods
|
Average rates of change
|
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Apply average rate methods to various functions Use graphical methods for rate calculation Solve practical rate problems |
Q/A on average rate calculation using graphical methods
Discussions on rate applications using real-world scenarios Solving average rate problems using systematic approaches Demonstrations using graph-based rate calculation Explaining practical applications using meaningful contexts |
Chalk and blackboard, graph paper, rate examples, exercise books
|
KLB Mathematics Book Three Pg 304-306
|
|
10 | 5 |
Graphical Methods
|
Advanced average rates
Introduction to instantaneous rates |
By the end of the
lesson, the learner
should be able to:
Calculate the average rates of change Handle complex rate scenarios Apply rates to business and scientific problems Integrate rate concepts with other topics |
Q/A on complex rate applications using advanced scenarios
Discussions on business and scientific rate applications Solving challenging rate problems using integrated methods Demonstrations using comprehensive rate examples Explaining advanced applications using detailed analysis |
Chalk and blackboard, advanced rate scenarios, exercise books
Chalk and blackboard, tangent line examples, exercise books |
KLB Mathematics Book Three Pg 304-310
|
|
10 | 6 |
Graphical Methods
|
Rate of change at an instant
|
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Apply instantaneous rate methods systematically Use graphical techniques for instant rates Solve practical instantaneous rate problems |
Q/A on instantaneous rate calculation using graphical methods
Discussions on tangent line slope interpretation Solving instantaneous rate problems using systematic approaches Demonstrations using detailed tangent constructions Explaining practical applications using real scenarios |
Chalk and blackboard, detailed graph examples, exercise books
|
KLB Mathematics Book Three Pg 310-311
|
|
10 | 7 |
Graphical Methods
|
Advanced instantaneous rates
Empirical graphs Advanced empirical methods |
By the end of the
lesson, the learner
should be able to:
Calculate the rate of change at an instant Handle complex instantaneous rate scenarios Apply instant rates to advanced problems Integrate instantaneous concepts with applications |
Q/A on advanced instantaneous applications using complex examples
Discussions on sophisticated rate problems using detailed analysis Solving challenging instantaneous problems using systematic methods Demonstrations using comprehensive rate constructions Explaining advanced applications using detailed reasoning |
Chalk and blackboard, advanced rate examples, exercise books
Chalk and blackboard, experimental data examples, exercise books Chalk and blackboard, complex data examples, exercise books |
KLB Mathematics Book Three Pg 310-315
|
|
11-12 |
END OF TERM EXAMINATION |
|||||||
13 |
CLOSING OF SCHOOL |
Your Name Comes Here