Home






SCHEME OF WORK
Chemistry
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1-2
ORGANIC CHEMISTRY I
Introduction to Organic Chemistry and Hydrocarbons
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
Fractional Distillation of Crude Oil
Cracking of Alkanes - Thermal and Catalytic Methods
By the end of the lesson, the learner should be able to:
Define organic chemistry and hydrocarbons
Explain why carbon forms many compounds
Classify hydrocarbons into alkanes, alkenes, and alkynes
Identify the bonding in carbon compounds
Explain fractional distillation process
Perform fractional distillation of crude oil
Identify different fractions and their uses
Relate boiling points to molecular size
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
Carbon models, Hydrocarbon structure charts, Molecular model kits
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
KLB Secondary Chemistry Form 3, Pages 86-87
KLB Secondary Chemistry Form 3, Pages 87-89
2 3
ORGANIC CHEMISTRY I
Alkane Series and Homologous Series Concept
Nomenclature of Alkanes - Straight Chain and Branched
By the end of the lesson, the learner should be able to:
Define homologous series using alkanes
Write molecular formulas for first 10 alkanes
Identify characteristics of homologous series
Apply general formula CₙH₂ₙ₊₂ for alkanes
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
Alkane series chart, Molecular formula worksheets, Periodic table
Structural formula charts, IUPAC naming rules poster, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 90-92
2 4
ORGANIC CHEMISTRY I
Isomerism in Alkanes - Structural Isomers
By the end of the lesson, the learner should be able to:
Define isomerism in alkanes
Draw structural isomers of butane and pentane
Distinguish between chain and positional isomerism
Predict number of isomers for given alkanes
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
Molecular model kits, Isomerism charts, Structural formula worksheets
KLB Secondary Chemistry Form 3, Pages 92-94
2 5
ORGANIC CHEMISTRY I
Laboratory Preparation of Methane
Laboratory Preparation of Ethane
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of methane
Perform methane preparation experiment safely
Test physical and chemical properties of methane
Write equation for methane preparation
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
KLB Secondary Chemistry Form 3, Pages 94-96
2 6
ORGANIC CHEMISTRY I
Physical Properties of Alkanes
Chemical Properties of Alkanes - Combustion and Substitution
By the end of the lesson, the learner should be able to:
Describe physical properties of alkanes
Explain trends in melting and boiling points
Relate molecular size to physical properties
Compare solubility in different solvents
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
Molecular models, Halogenation reaction charts, Chemical equation worksheets
KLB Secondary Chemistry Form 3, Pages 96-97
3 1-2
ORGANIC CHEMISTRY I
Uses of Alkanes in Industry and Daily Life
Introduction to Alkenes and Functional Groups
Nomenclature of Alkenes
By the end of the lesson, the learner should be able to:
List major uses of different alkanes
Explain industrial applications of alkanes
Describe environmental considerations
Evaluate economic importance of alkanes
Apply IUPAC rules for naming alkenes
Number carbon chains to give lowest numbers to double bonds
Name branched alkenes with substituents
Distinguish position isomers of alkenes
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
Industrial application charts, Product samples, Environmental impact materials
Alkene series charts, Molecular models showing double bonds, Functional group posters
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
KLB Secondary Chemistry Form 3, Pages 98-100
KLB Secondary Chemistry Form 3, Pages 101-102
3 3
ORGANIC CHEMISTRY I
Isomerism in Alkenes - Branching and Positional
Laboratory Preparation of Ethene
By the end of the lesson, the learner should be able to:
Draw structural isomers of alkenes
Distinguish between branching and positional isomerism
Identify geometric isomers in alkenes
Predict isomer numbers for given molecular formulas
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
Molecular model kits, Isomerism worksheets, Geometric isomer models
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
KLB Secondary Chemistry Form 3, Pages 102
3 4
ORGANIC CHEMISTRY I
Alternative Preparation of Ethene and Physical Properties
Chemical Properties of Alkenes - Addition Reactions
By the end of the lesson, the learner should be able to:
Describe catalytic dehydration using aluminum oxide
Compare different preparation methods
List physical properties of ethene
Explain trends in alkene physical properties
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
KLB Secondary Chemistry Form 3, Pages 102-104
3 5
ORGANIC CHEMISTRY I
Oxidation Reactions of Alkenes and Polymerization
Tests for Alkenes and Uses
By the end of the lesson, the learner should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇
Explain polymerization of ethene
Define monomers and polymers
Write equations for polymer formation
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
KLB Secondary Chemistry Form 3, Pages 107-108
3 6
ORGANIC CHEMISTRY I
Introduction to Alkynes and Triple Bond
By the end of the lesson, the learner should be able to:
Define alkynes and triple bond structure
Write general formula for alkynes (CₙH₂ₙ₋₂)
Identify first members of alkyne series
Compare degree of unsaturation in hydrocarbons
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
KLB Secondary Chemistry Form 3, Pages 109-110
4 1-2
ORGANIC CHEMISTRY I
Nomenclature and Isomerism in Alkynes
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests
By the end of the lesson, the learner should be able to:
Apply IUPAC naming rules for alkynes
Name branched alkynes with substituents
Draw structural isomers of alkynes
Identify branching and positional isomerism
Describe physical properties of alkynes
Compare alkyne properties with alkenes and alkanes
Write combustion equations for alkynes
Explain addition reactions of alkynes
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
KLB Secondary Chemistry Form 3, Pages 110-111
KLB Secondary Chemistry Form 3, Pages 112-113
4 3
ORGANIC CHEMISTRY I
NITROGEN AND ITS COMPOUNDS
Uses of Alkynes and Industrial Applications
Introduction to Nitrogen - Properties and Occurrence
By the end of the lesson, the learner should be able to:
List industrial uses of alkynes
Explain oxy-acetylene welding applications
Describe use in synthetic fiber production
Evaluate importance as chemical starting materials
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
KLB Secondary Chemistry Form 3, Pages 115-116
4 4
NITROGEN AND ITS COMPOUNDS
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
By the end of the lesson, the learner should be able to:
Describe isolation of nitrogen from air
Explain fractional distillation of liquid air
Set up apparatus for laboratory isolation
Identify impurities removed during isolation
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
KLB Secondary Chemistry Form 3, Pages 119-121
4 5
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitrogen Gas
Properties and Uses of Nitrogen Gas
By the end of the lesson, the learner should be able to:
Prepare nitrogen gas from ammonium compounds
Use sodium nitrite and ammonium chloride method
Test physical and chemical properties of nitrogen
Write equations for nitrogen preparation
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
KLB Secondary Chemistry Form 3, Pages 121-123
4 6
NITROGEN AND ITS COMPOUNDS
Nitrogen(I) Oxide - Preparation and Properties
Nitrogen(II) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate
Test physical and chemical properties
Explain decomposition and oxidizing properties
Describe uses of nitrogen(I) oxide
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
KLB Secondary Chemistry Form 3, Pages 123-125
5 1-2
NITROGEN AND ITS COMPOUNDS
Nitrogen(IV) Oxide - Preparation and Properties
Comparison of Nitrogen Oxides and Environmental Effects
Laboratory Preparation of Ammonia
By the end of the lesson, the learner should be able to:
Prepare nitrogen(IV) oxide from copper and concentrated nitric acid
Prepare from thermal decomposition of nitrates
Test properties including equilibrium with N₂O₄
Describe reactions and uses
Prepare ammonia from ammonium salts and alkalis
Set up apparatus with proper gas collection
Test characteristic properties of ammonia
Explain displacement reaction principle
Experiment: Add concentrated HNO₃ to copper turnings. Collect red-brown gas by downward delivery. Alternative: Heat lead(II) nitrate with cooling U-tube. Tests: Solubility, effect on litmus, burning elements, cooling/heating effects.
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
KLB Secondary Chemistry Form 3, Pages 127-131
KLB Secondary Chemistry Form 3, Pages 131-134
5 3
NITROGEN AND ITS COMPOUNDS
Preparation of Aqueous Ammonia and Solubility
Reactions of Aqueous Ammonia with Metal Ions
By the end of the lesson, the learner should be able to:
Prepare aqueous ammonia solution
Demonstrate high solubility using fountain experiment
Explain alkaline properties of aqueous ammonia
Write equations for ammonia in water
Experiment: Dissolve ammonia in water using inverted funnel method. Fountain experiment: Show partial vacuum formation due to high solubility. Tests: Effect on universal indicator, pH measurement. Theory: NH₃ + H₂O equilibrium.
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
KLB Secondary Chemistry Form 3, Pages 134-136
5 4
NITROGEN AND ITS COMPOUNDS
Chemical Properties of Ammonia - Reactions with Acids and Combustion
Industrial Manufacture of Ammonia - The Haber Process
By the end of the lesson, the learner should be able to:
Test neutralization reactions with acids
Investigate combustion of ammonia
Examine catalytic oxidation with platinum
Study reducing properties with metal oxides
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
KLB Secondary Chemistry Form 3, Pages 138-140
5 5
NITROGEN AND ITS COMPOUNDS
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations
By the end of the lesson, the learner should be able to:
List major uses of ammonia
Explain importance as fertilizer
Calculate nitrogen percentages in fertilizers
Compare different nitrogenous fertilizers
Discussion: Uses - fertilizer, refrigerant, cleaning agent, hydrazine production. Introduction to fertilizers: Ammonium sulfate, ammonium nitrate, ammonium phosphate, urea, CAN. Calculations: Percentage nitrogen content in each fertilizer type.
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
KLB Secondary Chemistry Form 3, Pages 141-144
5 6
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid
Set up all-glass apparatus safely
Explain brown fumes and yellow color
Purify nitric acid by air bubbling
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
KLB Secondary Chemistry Form 3, Pages 144-145
6 1-2
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Nitric(V) Acid
Reactions of Dilute Nitric(V) Acid with Metals
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
By the end of the lesson, the learner should be able to:
Describe catalytic oxidation process
Explain raw materials and conditions
Draw flow diagram of industrial process
Calculate theoretical yields and efficiency
Test reactions with carbonates and hydrogen carbonates
Test neutralization with metal hydroxides and oxides
Identify products formed
Write balanced chemical equations
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations.
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
KLB Secondary Chemistry Form 3, Pages 145-147
KLB Secondary Chemistry Form 3, Pages 147-150
6 3
NITROGEN AND ITS COMPOUNDS
Uses of Nitric(V) Acid and Introduction to Nitrates
Action of Heat on Nitrates - Decomposition Patterns
By the end of the lesson, the learner should be able to:
List major industrial uses of nitric acid
Explain importance in fertilizer manufacture
Describe use in explosives and dyes
Introduce nitrate salts and their preparation
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
KLB Secondary Chemistry Form 3, Pages 151
6 4
NITROGEN AND ITS COMPOUNDS
Test for Nitrates - Brown Ring Test
By the end of the lesson, the learner should be able to:
Perform brown ring test for nitrates
Explain mechanism of complex formation
Use alternative copper test method
Apply tests to unknown samples
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
KLB Secondary Chemistry Form 3, Pages 153-154
6 5
NITROGEN AND ITS COMPOUNDS
Environmental Pollution by Nitrogen Compounds
Pollution Control and Environmental Solutions
By the end of the lesson, the learner should be able to:
Explain sources of nitrogen pollution
Describe formation of acid rain
Discuss effects on environment and health
Evaluate pollution control measures
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
KLB Secondary Chemistry Form 3, Pages 154-157
6 6
NITROGEN AND ITS COMPOUNDS
Comprehensive Problem Solving - Nitrogen Chemistry
Laboratory Practical Assessment - Nitrogen Compounds
By the end of the lesson, the learner should be able to:
Solve complex problems involving nitrogen compounds
Apply knowledge to industrial processes
Calculate yields and percentages in reactions
Analyze experimental data and results
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
KLB Secondary Chemistry Form 3, Pages 119-157
7 1-2
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
Industrial Applications and Economic Importance
Chapter Review and Integration
Extraction of Sulphur
Allotropes of Sulphur
Physical Properties of Sulphur - Solubility
By the end of the lesson, the learner should be able to:
Evaluate economic importance of nitrogen industry
Analyze industrial production costs and benefits
Compare different manufacturing processes
Assess impact on agricultural productivity
Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process.
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram.
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
KLB Secondary Chemistry Form 3, Pages 119-157
KLB Secondary Chemistry Form 4, Pages 160-161
7 3
SULPHUR AND ITS COMPOUNDS
Physical Properties of Sulphur - Effect of Heat
Chemical Properties of Sulphur - Reactions with Elements
Chemical Properties of Sulphur - Reactions with Acids
Uses of Sulphur and Introduction to Oxides
By the end of the lesson, the learner should be able to:
Investigate the effect of heat on sulphur. Describe changes in color and viscosity of molten sulphur. Explain the molecular changes occurring during heating. Identify "flowers of sulphur".
Practical work: Experiment 2(b) - Heating sulphur and observing changes. Observation: Color changes from yellow to amber to reddish-brown to black. Testing viscosity by inverting test tube. Demonstration: Sublimation of sulphur vapour. Discussion: Breaking of S8 rings to form long chains.
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
KLB Secondary Chemistry Form 4, Pages 164-165
7 4
SULPHUR AND ITS COMPOUNDS
Preparation of Sulphur(IV) Oxide
Physical and Chemical Properties of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of sulphur(IV) oxide. Set up apparatus for gas preparation and collection. Write balanced equations for the preparation reactions. Explain the drying and collection methods used.
Practical work: Experiment 4 - Preparation of SO2 using sodium sulphite and dilute HCl. Apparatus setup: Round-bottomed flask, delivery tube, gas jars. Collection: Downward delivery method. Testing: Using acidified potassium chromate(VI) paper. Alternative method: Copper + concentrated H2SO
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
KLB Secondary Chemistry Form 4, Pages 170-171
7 5
SULPHUR AND ITS COMPOUNDS
Bleaching Action of Sulphur(IV) Oxide
Reducing Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing.
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
KLB Secondary Chemistry Form 4, Pages 173
7 6
SULPHUR AND ITS COMPOUNDS
Oxidising Action of Sulphur(IV) Oxide
Test for Sulphate and Sulphite Ions & Uses of SO2
By the end of the lesson, the learner should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
KLB Secondary Chemistry Form 4, Pages 176-177
8 1-2
SULPHUR AND ITS COMPOUNDS
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
By the end of the lesson, the learner should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process.
Investigate the oxidizing properties of concentrated H2SO Test reactions with metals and non-metals. Identify the products of oxidation reactions. Write balanced equations for redox reactions.
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
Practical work: Experiment 10 (continued) - Reactions with copper foil, zinc granules, charcoal. Testing evolved gases with acidified K2Cr2O7 paper, lime water. Observations: SO2 evolution, color changes. Discussion: H2SO4 → SO2 + H2O + [O]. Writing half-equations and overall equations.
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 179-181
KLB Secondary Chemistry Form 4, Pages 183-184
8 3
SULPHUR AND ITS COMPOUNDS
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
Reactions of Dilute Sulphuric(VI) Acid - With Metals
By the end of the lesson, the learner should be able to:
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions.
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
KLB Secondary Chemistry Form 4, Pages 184
8 4
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates.
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
KLB Secondary Chemistry Form 4, Pages 185-186
8 5
SULPHUR AND ITS COMPOUNDS
Hydrogen Sulphide - Preparation and Physical Properties
Chemical Properties of Hydrogen Sulphide
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions.
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling.
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
KLB Secondary Chemistry Form 4, Pages 187-188
8 6
SULPHUR AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
Pollution Effects and Summary
Introduction and Preparation of Chlorine
By the end of the lesson, the learner should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry.
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
KLB Secondary Chemistry Form 4, Pages 190-194
9 1-2
CHLORINE AND ITS COMPOUNDS
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions
By the end of the lesson, the learner should be able to:
Investigate the physical properties of chlorine gas. Explain the method of collection used for chlorine. Test the solubility of chlorine in water. State the density and color of chlorine gas.
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions.
Practical work: Experiment 6.2 - Testing chlorine gas preserved from previous experiment. Recording observations in Table 6. Testing: Color, smell (caution - no direct smelling), density, solubility in water. Demonstration: Inverting gas jar in water trough. Discussion: Why collected by downward delivery.
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
KLB Secondary Chemistry Form 4, Pages 196-197
KLB Secondary Chemistry Form 4, Pages 201-202
9 3
CHLORINE AND ITS COMPOUNDS
Test for Chloride Ions
Uses of Chlorine and its Compounds
By the end of the lesson, the learner should be able to:
Carry out confirmatory tests for chloride ions. Distinguish between different chloride tests. Practice qualitative analysis techniques. Write equations for chloride ion tests.
Practical work: Experiment 6.9 - Testing sodium chloride with concentrated H2SO4, testing with lead(II) nitrate solution. Recording observations in Table 6. Tests: White fumes with H2SO4 + ammonia test, white precipitate with Pb(NO3)2 that dissolves on warming. Writing equations: NaCl + H2SO4 → NaHSO4 + HCl, Pb²⁺ + 2Cl⁻ → PbCl
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
KLB Secondary Chemistry Form 4, Pages 204-205
9 4
CHLORINE AND ITS COMPOUNDS
Hydrogen Chloride - Laboratory Preparation
Chemical Properties of Hydrogen Chloride
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used.
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
KLB Secondary Chemistry Form 4, Pages 207-208
9 5
CHLORINE AND ITS COMPOUNDS
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid
By the end of the lesson, the learner should be able to:
Describe industrial production of hydrochloric acid. Identify raw materials and conditions used. Explain the controlled combustion process. Draw flow diagrams of the industrial process.
Study of Figure 6.4 - Large-scale manufacture setup. Discussion: Raw materials (H2 from electrolysis/cracking, Cl2 from electrolysis). Controlled combustion: H2 + Cl2 → 2HCl in jet burner. Dissolving HCl gas in water over glass beads. Safety: Explosive nature of H2/Cl2 mixture, use of excess chlorine. Industrial considerations: 35% concentration, transport in rubber-lined steel tanks.
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
KLB Secondary Chemistry Form 4, Pages 211-212
9 6
CHLORINE AND ITS COMPOUNDS
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry.
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts.
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 213-215

Your Name Comes Here


Download

Feedback