If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
REPORTING AND REVISION OF TERM 2 EXAMS |
|||||||
1 | 2-3 |
THE MOLE
|
Relative Mass - Introduction and Experimental Investigation
Avogadro's Constant and the Mole Concept Interconversion of Mass and Moles for Elements |
By the end of the
lesson, the learner
should be able to:
Define relative mass using practical examples Compare masses of different objects using a reference standard Explain the concept of relative atomic mass Identify carbon-12 as the reference standard Apply the formula: moles = mass/molar mass Calculate mass from given moles of elements Convert between moles and number of atoms Solve numerical problems involving moles and mass |
Experiment: Weighing different sized nails using beam balance. Use smallest nail as reference standard. Q/A: Discuss everyday examples of relative measurements. Teacher exposition: Introduction of carbon-12 scale and IUPAC recommendations. Calculate relative masses from experimental data.
Worked examples: Mass-mole conversions using triangle method. Supervised practice: Calculate moles in given masses of common elements. Problem solving: Convert moles to atoms using Avogadro's number. Assignment: Practice problems on interconversion. |
Different sized nails ( 5-15cm), Beam balance, Fruits of different masses, Reference charts
Beam balance, Various sized nails, Scientific calculators, Avogadro's constant charts Scientific calculators, Periodic table, Worked example charts, Formula triangles |
KLB Secondary Chemistry Form 3, Pages 25-27
KLB Secondary Chemistry Form 3, Pages 30-32 |
|
1 | 4 |
THE MOLE
|
Molecules and Moles - Diatomic Elements
|
By the end of the
lesson, the learner
should be able to:
Distinguish between atoms and molecules Define relative molecular mass Calculate moles of molecules from given mass Determine number of atoms in molecular compounds |
Discussion: Elements existing as molecules (O₂, H₂, N₂, Cl₂). Teacher exposition: Difference between atomic and molecular mass. Worked examples: Calculate moles of molecular elements. Problem solving: Number of atoms in molecular compounds.
|
Molecular models, Charts showing diatomic elements, Scientific calculators
|
KLB Secondary Chemistry Form 3, Pages 29-30
|
|
1 | 5 |
THE MOLE
|
Empirical Formula - Experimental Determination
Empirical Formula - Reduction Method |
By the end of the
lesson, the learner
should be able to:
Define empirical formula Determine empirical formula from experimental data Calculate mole ratios from mass data Express results as simplest whole number ratios |
Experiment: Burning magnesium in air to form magnesium oxide. Measure masses before and after reaction. Calculate moles of Mg and O from mass data. Determine mole ratio and empirical formula. Safety precautions during heating.
|
Crucible and lid, Magnesium ribbon, Bunsen burner, Beam balance, Tongs, Safety equipment
Combustion tube, Porcelain boat, Copper(II) oxide, Laboratory gas, Beam balance, Bunsen burner |
KLB Secondary Chemistry Form 3, Pages 32-35
|
|
2 | 1 |
THE MOLE
|
Empirical Formula - Percentage Composition Method
|
By the end of the
lesson, the learner
should be able to:
Calculate empirical formula from percentage composition Convert percentages to moles Determine simplest whole number ratios Apply method to various compounds |
Worked examples: Calculate empirical formula from percentage data. Method: percentage → mass → moles → ratio. Practice problems: Various compounds with different compositions. Discussion: When to multiply ratios to get whole numbers.
|
Scientific calculators, Percentage composition charts, Worked example displays
|
KLB Secondary Chemistry Form 3, Pages 37-38
|
|
2 | 2-3 |
THE MOLE
|
Molecular Formula - Determination from Empirical Formula
Molecular Formula - Combustion Analysis Concentration and Molarity of Solutions |
By the end of the
lesson, the learner
should be able to:
Define molecular formula Relate molecular formula to empirical formula Calculate molecular formula using molecular mass Apply the relationship (empirical formula)ₙ = molecular formula Define concentration and molarity of solutions Calculate molarity from mass and volume data Convert between different concentration units Apply molarity calculations to various solutions |
Teacher exposition: Difference between empirical and molecular formulas. Worked examples: Calculate molecular formula from empirical formula and molecular mass. Formula: n = molecular mass/empirical formula mass. Practice problems with various organic compounds.
Teacher exposition: Definition of molarity (moles/dm³). Worked examples: Calculate molarity from mass of solute and volume. Convert between g/dm³ and mol/dm³. Practice problems: Various salt solutions and their molarities. |
Scientific calculators, Molecular mass charts, Worked example displays
Scientific calculators, Combustion analysis charts, Molecular models of hydrocarbons Scientific calculators, Molarity charts, Various salt samples for demonstration |
KLB Secondary Chemistry Form 3, Pages 38-40
KLB Secondary Chemistry Form 3, Pages 41-43 |
|
2 | 4 |
THE MOLE
|
Preparation of Molar Solutions
Dilution of Solutions |
By the end of the
lesson, the learner
should be able to:
Describe procedure for preparing molar solutions Use volumetric flasks correctly Calculate masses needed for specific molarities Prepare standard solutions accurately |
Experiment: Prepare 1M, 0.5M, and 0.25M NaOH solutions in different volumes. Use volumetric flasks of 1000cm³, 500cm³, and 250cm³. Calculate required masses. Demonstrate proper dissolution and dilution techniques.
|
Volumetric flasks (250, 500, 1000cm³), Sodium hydroxide pellets, Beam balance, Wash bottles, Beakers
Volumetric flasks, Hydrochloric acid (2M), Measuring cylinders, Pipettes, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 43-46
|
|
2 | 5 |
THE MOLE
|
Stoichiometry - Experimental Determination of Equations
|
By the end of the
lesson, the learner
should be able to:
Determine chemical equations from experimental data Calculate mole ratios from mass measurements Write balanced chemical equations Apply stoichiometry to displacement reactions |
Experiment: Iron displacement of copper from CuSO₄ solution. Measure masses of iron used and copper displaced. Calculate mole ratios. Derive balanced chemical equation. Discuss spectator ions.
|
Iron filings, Copper(II) sulphate solution, Beam balance, Beakers, Filter equipment
|
KLB Secondary Chemistry Form 3, Pages 50-53
|
|
3 | 1 |
THE MOLE
|
Stoichiometry - Precipitation Reactions
|
By the end of the
lesson, the learner
should be able to:
Investigate stoichiometry of precipitation reactions Determine mole ratios from volume measurements Write ionic equations for precipitation Analyze limiting and excess reagents |
Experiment: Pb(NO₃)₂ + KI precipitation reaction. Use different volumes to determine stoichiometry. Measure precipitate heights. Plot graphs to find reaction ratios. Identify limiting reagents.
|
Test tubes, Lead(II) nitrate solution, Potassium iodide solution, Burettes, Ethanol, Rulers
|
KLB Secondary Chemistry Form 3, Pages 53-56
|
|
3 | 2-3 |
THE MOLE
|
Stoichiometry - Gas Evolution Reactions
Volumetric Analysis - Introduction and Apparatus Titration - Acid-Base Neutralization |
By the end of the
lesson, the learner
should be able to:
Determine stoichiometry of gas-producing reactions Collect and measure gas volumes Calculate mole ratios involving gases Write equations for acid-carbonate reactions Perform acid-base titrations accurately Use indicators to determine end points Record titration data properly Calculate average titres from multiple readings |
Experiment: HCl + Na₂CO₃ reaction. Collect CO₂ gas in plastic bag. Measure gas mass and calculate moles. Determine mole ratios of reactants and products. Write balanced equation.
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M HCl using phenolphthalein. Repeat three times for consistency. Record data in tabular form. Calculate average titre. Discuss accuracy and precision. |
Conical flask, Thistle funnel, Plastic bags, Rubber bands, Sodium carbonate, HCl solution
Pipettes (10, 20, 25cm³), Burettes (50cm³), Pipette fillers, Conical flasks, Various solutions Burettes, Pipettes, 0.1M NaOH, 0.1M HCl, Phenolphthalein indicator, Conical flasks |
KLB Secondary Chemistry Form 3, Pages 56-58
KLB Secondary Chemistry Form 3, Pages 59-62 |
|
3 | 4 |
THE MOLE
|
Titration - Diprotic Acids
Standardization of Solutions |
By the end of the
lesson, the learner
should be able to:
Investigate titrations involving diprotic acids Determine basicity of acids from titration data Compare volumes needed for mono- and diprotic acids Write equations for diprotic acid reactions |
Experiment: Titrate 25cm³ of 0.1M NaOH with 0.1M H₂SO₄. Compare volume used with previous HCl titration. Calculate mole ratios. Explain concept of basicity. Introduce dibasic and tribasic acids.
|
Burettes, Pipettes, 0.1M H₂SO₄, 0.1M NaOH, Phenolphthalein, Basicity reference chart
Anhydrous Na₂CO₃, Approximately 0.1M HCl, Methyl orange, Volumetric flasks, Analytical balance |
KLB Secondary Chemistry Form 3, Pages 62-65
|
|
3 | 5 |
THE MOLE
|
Back Titration Method
|
By the end of the
lesson, the learner
should be able to:
Understand principle of back titration Apply back titration to determine composition Calculate concentrations using back titration data Determine atomic masses from back titration |
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass.
|
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
|
KLB Secondary Chemistry Form 3, Pages 67-70
|
|
4 | 1 |
THE MOLE
|
Redox Titrations - Principles
Redox Titrations - KMnO₄ Standardization |
By the end of the
lesson, the learner
should be able to:
Explain principles of redox titrations Identify color changes in redox reactions Understand self-indicating nature of some redox reactions Write ionic equations for redox processes |
Teacher exposition: Redox titration principles. Demonstrate color changes: MnO₄⁻ (purple) → Mn²⁺ (colorless), Cr₂O₇²⁻ (orange) → Cr³⁺ (green). Discussion: Self-indicating reactions. Write half-equations and overall ionic equations.
|
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts
Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes |
KLB Secondary Chemistry Form 3, Pages 68-70
|
|
4 | 2-3 |
THE MOLE
|
Water of Crystallization Determination
Atomicity and Molar Gas Volume |
By the end of the
lesson, the learner
should be able to:
Determine water of crystallization in hydrated salts Use redox titration to find formula of hydrated salt Calculate value of 'n' in crystallization formulas Apply analytical data to determine complete formulas Define atomicity of gaseous elements Classify gases as monoatomic, diatomic, or triatomic Determine molar gas volume experimentally Calculate gas densities and molar masses |
Experiment: Determine 'n' in FeSO₄(NH₄)₂SO₄·nH₂O. Dissolve known mass in acid, titrate with standardized KMnO₄. Calculate moles of iron(II), hence complete formula. Compare theoretical and experimental values.
Experiment: Measure volumes and masses of different gases (O₂, CO₂, Cl₂). Calculate densities and molar masses. Determine volume occupied by one mole. Compare values at different conditions. |
Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus |
KLB Secondary Chemistry Form 3, Pages 72-73
KLB Secondary Chemistry Form 3, Pages 73-75 |
|
4 | 4 |
THE MOLE
|
Combining Volumes of Gases - Experimental Investigation
Gas Laws and Chemical Equations |
By the end of the
lesson, the learner
should be able to:
Investigate Gay-Lussac's law experimentally Measure combining volumes of reacting gases Determine simple whole number ratios Write equations from volume relationships |
Experiment: React NH₃ and HCl gases in measured volumes. Observe formation of NH₄Cl solid. Measure residual gas volumes. Determine combining ratios. Apply to other gas reactions.
|
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips
Scientific calculators, Gas law charts, Volume ratio examples |
KLB Secondary Chemistry Form 3, Pages 75-77
|
|
4 | 5 |
ORGANIC CHEMISTRY I
|
Introduction to Organic Chemistry and Hydrocarbons
|
By the end of the
lesson, the learner
should be able to:
Define organic chemistry and hydrocarbons Explain why carbon forms many compounds Classify hydrocarbons into alkanes, alkenes, and alkynes Identify the bonding in carbon compounds |
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
|
Carbon models, Hydrocarbon structure charts, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
5 | 1 |
ORGANIC CHEMISTRY I
|
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
Fractional Distillation of Crude Oil |
By the end of the
lesson, the learner
should be able to:
Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation |
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
|
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes |
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
5 | 2-3 |
ORGANIC CHEMISTRY I
|
Cracking of Alkanes - Thermal and Catalytic Methods
Alkane Series and Homologous Series Concept |
By the end of the
lesson, the learner
should be able to:
Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes |
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties. |
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
Alkane series chart, Molecular formula worksheets, Periodic table |
KLB Secondary Chemistry Form 3, Pages 89-90
KLB Secondary Chemistry Form 3, Pages 90-92 |
|
5 | 4 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkanes - Straight Chain and Branched
Isomerism in Alkanes - Structural Isomers |
By the end of the
lesson, the learner
should be able to:
Name straight-chain alkanes using IUPAC rules Identify parent chains in branched alkanes Name branched alkanes with substituent groups Apply systematic naming rules correctly |
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
|
Structural formula charts, IUPAC naming rules poster, Molecular model kits
Molecular model kits, Isomerism charts, Structural formula worksheets |
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
5 | 5 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Methane
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
|
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
|
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
6 | 1 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethane
Physical Properties of Alkanes |
By the end of the
lesson, the learner
should be able to:
Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation |
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
|
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials |
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
6 | 2-3 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life Introduction to Alkenes and Functional Groups |
By the end of the
lesson, the learner
should be able to:
Write equations for complete and incomplete combustion Explain substitution reactions with halogens Describe conditions for halogenation reactions Name halogenated alkane products List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products. |
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials Alkene series charts, Molecular models showing double bonds, Functional group posters |
KLB Secondary Chemistry Form 3, Pages 97-98
KLB Secondary Chemistry Form 3, Pages 98-100 |
|
6 | 4 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkenes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
|
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 101-102
|
|
6 | 5 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
|
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
|
Molecular model kits, Isomerism worksheets, Geometric isomer models
|
KLB Secondary Chemistry Form 3, Pages 102
|
|
7 | 1 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
|
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts |
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
7 | 2-3 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
Oxidation Reactions of Alkenes and Polymerization Tests for Alkenes and Uses |
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations. |
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts |
KLB Secondary Chemistry Form 3, Pages 105-107
KLB Secondary Chemistry Form 3, Pages 107-108 |
|
7 | 4 |
ORGANIC CHEMISTRY I
|
Introduction to Alkynes and Triple Bond
|
By the end of the
lesson, the learner
should be able to:
Define alkynes and triple bond structure Write general formula for alkynes (CₙH₂ₙ₋₂) Identify first members of alkyne series Compare degree of unsaturation in hydrocarbons |
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
|
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
|
KLB Secondary Chemistry Form 3, Pages 109-110
|
|
7 | 5 |
ORGANIC CHEMISTRY I
|
Nomenclature and Isomerism in Alkynes
Laboratory Preparation of Ethyne |
By the end of the
lesson, the learner
should be able to:
Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
|
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions |
KLB Secondary Chemistry Form 3, Pages 110-111
|
|
8 | 1 |
ORGANIC CHEMISTRY I
|
Physical and Chemical Properties of Alkynes
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
|
Physical properties charts, Comparison tables, Combustion equation examples
|
KLB Secondary Chemistry Form 3, Pages 112-113
|
|
8 | 2-3 |
ORGANIC CHEMISTRY I
ORGANIC CHEMISTRY I CHLORINE AND ITS COMPOUNDS CHLORINE AND ITS COMPOUNDS |
Addition Reactions of Alkynes and Chemical Tests
Uses of Alkynes and Industrial Applications Introduction and Preparation of Chlorine Physical Properties of Chlorine |
By the end of the
lesson, the learner
should be able to:
Write equations for halogenation of alkynes Describe hydrogenation and hydrohalogenation Compare reaction rates: alkynes vs alkenes Perform chemical tests for alkynes List industrial uses of alkynes Explain oxy-acetylene welding applications Describe use in synthetic fiber production Evaluate importance as chemical starting materials |
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses. |
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 113-115
KLB Secondary Chemistry Form 3, Pages 115-116 |
|
8 | 4 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals Chemical Properties of Chlorine - Reaction with Non-metals |
By the end of the
lesson, the learner
should be able to:
Investigate the reaction of chlorine with water. Explain the formation of chlorine water. Test the acidic nature of chlorine water. Demonstrate the bleaching action of chlorine. |
Practical work: Experiment 6.3 - Bubbling chlorine through water. Testing with litmus papers (dry vs moist). Testing with colored flower petals. Formation of green-yellow chlorine water. Writing equations: Cl2 + H2O → HCl + HOCl. Discussion: Formation of hypochlorous acid and hydrochloric acid.
|
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 197-199
|
|
8 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions Oxidising Properties - Displacement Reactions |
By the end of the
lesson, the learner
should be able to:
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions. |
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
|
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts |
KLB Secondary Chemistry Form 4, Pages 201-202
|
|
9 | 1 |
CHLORINE AND ITS COMPOUNDS
|
Test for Chloride Ions
Uses of Chlorine and its Compounds |
By the end of the
lesson, the learner
should be able to:
Carry out confirmatory tests for chloride ions. Distinguish between different chloride tests. Practice qualitative analysis techniques. Write equations for chloride ion tests. |
Practical work: Experiment 6.9 - Testing sodium chloride with concentrated H2SO4, testing with lead(II) nitrate solution. Recording observations in Table 6. Tests: White fumes with H2SO4 + ammonia test, white precipitate with Pb(NO3)2 that dissolves on warming. Writing equations: NaCl + H2SO4 → NaHSO4 + HCl, Pb²⁺ + 2Cl⁻ → PbCl
|
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams |
KLB Secondary Chemistry Form 4, Pages 204-205
|
|
9 | 2-3 |
CHLORINE AND ITS COMPOUNDS
|
Hydrogen Chloride - Laboratory Preparation
Chemical Properties of Hydrogen Chloride |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used. Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents. |
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions. |
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators |
KLB Secondary Chemistry Form 4, Pages 207-208
KLB Secondary Chemistry Form 4, Pages 208-211 |
|
9 | 4 |
CHLORINE AND ITS COMPOUNDS
|
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid |
By the end of the
lesson, the learner
should be able to:
Describe industrial production of hydrochloric acid. Identify raw materials and conditions used. Explain the controlled combustion process. Draw flow diagrams of the industrial process. |
Study of Figure 6.4 - Large-scale manufacture setup. Discussion: Raw materials (H2 from electrolysis/cracking, Cl2 from electrolysis). Controlled combustion: H2 + Cl2 → 2HCl in jet burner. Dissolving HCl gas in water over glass beads. Safety: Explosive nature of H2/Cl2 mixture, use of excess chlorine. Industrial considerations: 35% concentration, transport in rubber-lined steel tanks.
|
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams |
KLB Secondary Chemistry Form 4, Pages 211-212
|
|
9 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Environmental Pollution by Chlorine Compounds and Summary
|
By the end of the
lesson, the learner
should be able to:
Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry. |
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts.
|
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
|
KLB Secondary Chemistry Form 4, Pages 213-215
|
Your Name Comes Here