If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 3 |
ORGANIC CHEMISTRY I
|
Introduction to Alkenes and Functional Groups
|
By the end of the
lesson, the learner
should be able to:
Define alkenes and unsaturation Identify the C=C functional group Write general formula for alkenes (CₙH₂ₙ) Compare alkenes with alkanes |
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
|
Alkene series charts, Molecular models showing double bonds, Functional group posters
|
KLB Secondary Chemistry Form 3, Pages 100-101
|
|
1 | 4 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkenes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
|
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 101-102
|
|
1 | 5 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
|
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
|
Molecular model kits, Isomerism worksheets, Geometric isomer models
|
KLB Secondary Chemistry Form 3, Pages 102
|
|
2 | 1-2 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene Describe catalytic dehydration using aluminum oxide Compare different preparation methods List physical properties of ethene Explain trends in alkene physical properties |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size. |
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts |
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
2 | 3 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
|
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
|
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
|
KLB Secondary Chemistry Form 3, Pages 105-107
|
|
2 | 4 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
|
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
|
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
|
KLB Secondary Chemistry Form 3, Pages 107-108
|
|
2 | 5 |
ORGANIC CHEMISTRY I
|
Tests for Alkenes and Uses
|
By the end of the
lesson, the learner
should be able to:
Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture |
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
|
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
|
KLB Secondary Chemistry Form 3, Pages 108-109
|
|
3 | 1-2 |
ORGANIC CHEMISTRY I
|
Introduction to Alkynes and Triple Bond
Nomenclature and Isomerism in Alkynes |
By the end of the
lesson, the learner
should be able to:
Define alkynes and triple bond structure Write general formula for alkynes (CₙH₂ₙ₋₂) Identify first members of alkyne series Compare degree of unsaturation in hydrocarbons Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents. |
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 109-110
KLB Secondary Chemistry Form 3, Pages 110-111 |
|
3 | 3 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethyne
|
By the end of the
lesson, the learner
should be able to:
Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation |
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
|
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
|
KLB Secondary Chemistry Form 3, Pages 111-112
|
|
3 | 4 |
ORGANIC CHEMISTRY I
|
Physical and Chemical Properties of Alkynes
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
|
Physical properties charts, Comparison tables, Combustion equation examples
|
KLB Secondary Chemistry Form 3, Pages 112-113
|
|
3 | 5 |
ORGANIC CHEMISTRY I
|
Addition Reactions of Alkynes and Chemical Tests
|
By the end of the
lesson, the learner
should be able to:
Write equations for halogenation of alkynes Describe hydrogenation and hydrohalogenation Compare reaction rates: alkynes vs alkenes Perform chemical tests for alkynes |
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
|
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
|
KLB Secondary Chemistry Form 3, Pages 113-115
|
|
4 | 1-2 |
ORGANIC CHEMISTRY I
SULPHUR AND ITS COMPOUNDS |
Uses of Alkynes and Industrial Applications
Extraction of Sulphur Allotropes of Sulphur |
By the end of the
lesson, the learner
should be able to:
List industrial uses of alkynes Explain oxy-acetylene welding applications Describe use in synthetic fiber production Evaluate importance as chemical starting materials Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process. |
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram. |
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum) Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers |
KLB Secondary Chemistry Form 3, Pages 115-116
KLB Secondary Chemistry Form 4, Pages 160-161 |
|
4 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Physical Properties of Sulphur - Solubility
Physical Properties of Sulphur - Effect of Heat |
By the end of the
lesson, the learner
should be able to:
Investigate the solubility of sulphur in different solvents. Explain the molecular structure of sulphur. Compare solubility in polar and non-polar solvents. State the physical properties of sulphur. |
Practical work: Experiment 2(a) - Testing solubility of sulphur in water, benzene, methylbenzene, and carbon(IV) sulphide. Observation and recording in Table Discussion: Explain why sulphur dissolves in organic solvents but not water. Drawing: Puckered ring structure of S8 molecule.
|
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 163-164
|
|
4 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Chemical Properties of Sulphur - Reactions with Elements
Chemical Properties of Sulphur - Reactions with Acids |
By the end of the
lesson, the learner
should be able to:
Investigate the reaction of sulphur with oxygen. Investigate the reaction of sulphur with metals. Write balanced equations for reactions of sulphur. Explain the formation of sulphides. |
Practical work: Experiment 3(a) - Burning sulphur in oxygen using deflagrating spoon. Testing with moist litmus paper. Practical work: Heating mixtures of sulphur with iron powder and copper powder. Observation: Exothermic reactions and color changes. Writing equations: Fe + S → FeS, 2Cu + S → Cu2S.
|
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access |
KLB Secondary Chemistry Form 4, Pages 165-167
|
|
4 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
List the uses of sulphur in industry and agriculture. Identify the two main oxides of sulphur. Compare sulphur(IV) oxide and sulphur(VI) oxide. Plan laboratory preparation methods for sulphur oxides. |
Discussion: Industrial uses - sulphuric acid manufacture, fungicide, vulcanization of rubber, bleaching agents, dyes and fireworks. Q/A: Review oxidation states of sulphur in compounds. Introduction: SO2 and SO3 as important compounds. Preparation planning: Methods for laboratory preparation of SO
|
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper |
KLB Secondary Chemistry Form 4, Pages 168-170
|
|
5 | 1-2 |
SULPHUR AND ITS COMPOUNDS
|
Physical and Chemical Properties of Sulphur(IV) Oxide
Bleaching Action of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
Investigate the physical properties of SO2 gas. Test the solubility and acidity of SO Write equations for formation of sulphurous acid. Identify the acidic nature of SO Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing. |
Practical work: Experiment 5 - Testing color, smell, solubility in water. Testing with dry and moist litmus papers. Universal indicator tests with water and NaOH. Formation of normal and acid salts. Recording observations in Table Safety: Proper ventilation due to toxic nature.
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes. |
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents |
KLB Secondary Chemistry Form 4, Pages 171-173
KLB Secondary Chemistry Form 4, Pages 173 |
|
5 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Reducing Action of Sulphur(IV) Oxide
|
By the end of the
lesson, the learner
should be able to:
Investigate SO2 as a reducing agent. Test reactions with various oxidizing agents. Write ionic equations for redox reactions. Identify color changes in redox reactions. |
Practical work: Experiment 7 - Testing SO2 with acidified potassium dichromate(VI), potassium manganate(VII), bromine water, iron(III) chloride. Recording observations in Table 6. Color changes: Orange to green, purple to colorless, brown to colorless, yellow to pale green. Writing half-equations and overall equations.
|
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
|
KLB Secondary Chemistry Form 4, Pages 173-176
|
|
5 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Oxidising Action of Sulphur(IV) Oxide
|
By the end of the
lesson, the learner
should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO |
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
|
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
|
KLB Secondary Chemistry Form 4, Pages 176-177
|
|
5 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Test for Sulphate and Sulphite Ions & Uses of SO2
|
By the end of the
lesson, the learner
should be able to:
Carry out confirmatory tests for sulphate and sulphite ions. Distinguish between sulphate and sulphite using chemical tests. List the uses of sulphur(IV) oxide. Explain the applications in industry. |
Practical work: Experiment 9 - Testing sodium sulphate and sodium sulphite with barium chloride. Adding dilute HCl to precipitates. Recording observations in Table 8. Discussion: BaSO4 insoluble in acid, BaSO3 dissolves. Uses: Raw material for H2SO4, bleaching wood pulp, fumigant, preservative.
|
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
|
KLB Secondary Chemistry Form 4, Pages 178-179
|
|
6 | 1-2 |
SULPHUR AND ITS COMPOUNDS
|
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties |
By the end of the
lesson, the learner
should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process. Investigate the dehydrating properties of concentrated H2SO Demonstrate removal of water from hydrated salts. Show dehydration of organic compounds. Explain the hygroscopic nature of the acid. |
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
Practical work: Experiment 10 - Adding concentrated H2SO4 to copper(II) sulphate crystals, sucrose crystals, ethanol. Observations: Blue to white crystals, charring of sugar, formation of ethene. Safety: Proper dilution technique - acid to water. Testing evolved gases. Discussion: Chemical vs physical dehydration. |
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard |
KLB Secondary Chemistry Form 4, Pages 179-181
KLB Secondary Chemistry Form 4, Pages 181-183 |
|
6 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
|
By the end of the
lesson, the learner
should be able to:
Investigate the oxidizing properties of concentrated H2SO Test reactions with metals and non-metals. Identify the products of oxidation reactions. Write balanced equations for redox reactions. |
Practical work: Experiment 10 (continued) - Reactions with copper foil, zinc granules, charcoal. Testing evolved gases with acidified K2Cr2O7 paper, lime water. Observations: SO2 evolution, color changes. Discussion: H2SO4 → SO2 + H2O + [O]. Writing half-equations and overall equations.
|
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
|
KLB Secondary Chemistry Form 4, Pages 183-184
|
|
6 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
|
By the end of the
lesson, the learner
should be able to:
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions. |
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
|
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
|
KLB Secondary Chemistry Form 4, Pages 184
|
|
6 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Metals
|
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with metals. Compare reactivity of different metals. Test for hydrogen gas evolution. Relate reactions to reactivity series. |
Practical work: Experiment 11 - Reactions with magnesium, zinc, copper. Testing evolved gas with burning splint. Recording observations in Table 10. Discussion: More reactive metals above hydrogen displace it. Vigour of reaction decreases down reactivity series. Writing ionic equations.
|
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
|
KLB Secondary Chemistry Form 4, Pages 184-185
|
|
7 | 1-2 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates. Investigate reactions of dilute H2SO4 with metal oxides and hydroxides. Identify neutralization reactions. Explain formation of insoluble sulphates. Write equations for acid-base reactions. |
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
Practical work: Experiment 13 - Reactions with magnesium oxide, zinc oxide, copper(II) oxide, lead(II) oxide, sodium hydroxide. Recording observations in Table 1 Discussion: Salt and water formation, immediate stopping with lead(II) oxide due to insoluble PbSO Acid-base neutralization concept. |
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming |
KLB Secondary Chemistry Form 4, Pages 185-186
KLB Secondary Chemistry Form 4, Pages 186-187 |
|
7 | 3 |
SULPHUR AND ITS COMPOUNDS
|
Hydrogen Sulphide - Preparation and Physical Properties
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions. |
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling.
|
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
|
KLB Secondary Chemistry Form 4, Pages 187-188
|
|
7 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Chemical Properties of Hydrogen Sulphide
|
By the end of the
lesson, the learner
should be able to:
Investigate H2S as a reducing agent. Test reactions with oxidizing agents. Demonstrate precipitation of metal sulphides. Write ionic equations for redox reactions. |
Practical demonstrations: H2S with bromine water, iron(III) chloride, acidified KMnO4, K2Cr2O7. Precipitation tests: H2S with copper(II) sulphate, lead(II) nitrate, zinc sulphate. Color changes: Brown to colorless, yellow to green, purple to colorless. Formation of black, yellow, and white precipitates.
|
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
|
KLB Secondary Chemistry Form 4, Pages 188-190
|
|
7 |
Mazingira day |
|||||||
8 |
End term exams |
|||||||
8 | 4 |
SULPHUR AND ITS COMPOUNDS
|
Pollution Effects and Summary
|
By the end of the
lesson, the learner
should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry. |
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
|
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
|
KLB Secondary Chemistry Form 4, Pages 190-194
|
Your Name Comes Here