If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
REPORTING AND OPERNER EXAMINATION |
|||||||
2 | 1-2 |
ORGANIC CHEMISTRY I
|
Introduction to Organic Chemistry and Hydrocarbons
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil Fractional Distillation of Crude Oil |
By the end of the
lesson, the learner
should be able to:
Define organic chemistry and hydrocarbons Explain why carbon forms many compounds Classify hydrocarbons into alkanes, alkenes, and alkynes Identify the bonding in carbon compounds Explain fractional distillation process Perform fractional distillation of crude oil Identify different fractions and their uses Relate boiling points to molecular size |
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size. |
Carbon models, Hydrocarbon structure charts, Molecular model kits
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes |
KLB Secondary Chemistry Form 3, Pages 86-87
KLB Secondary Chemistry Form 3, Pages 87-89 |
|
2 | 3 |
ORGANIC CHEMISTRY I
|
Cracking of Alkanes - Thermal and Catalytic Methods
Alkane Series and Homologous Series Concept |
By the end of the
lesson, the learner
should be able to:
Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking |
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
|
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
Alkane series chart, Molecular formula worksheets, Periodic table |
KLB Secondary Chemistry Form 3, Pages 89-90
|
|
2 | 4 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkanes - Straight Chain and Branched
|
By the end of the
lesson, the learner
should be able to:
Name straight-chain alkanes using IUPAC rules Identify parent chains in branched alkanes Name branched alkanes with substituent groups Apply systematic naming rules correctly |
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
|
Structural formula charts, IUPAC naming rules poster, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
2 | 5 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkanes - Structural Isomers
Laboratory Preparation of Methane |
By the end of the
lesson, the learner
should be able to:
Define isomerism in alkanes Draw structural isomers of butane and pentane Distinguish between chain and positional isomerism Predict number of isomers for given alkanes |
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
|
Molecular model kits, Isomerism charts, Structural formula worksheets
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints |
KLB Secondary Chemistry Form 3, Pages 92-94
|
|
3 | 1-2 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethane
Physical Properties of Alkanes |
By the end of the
lesson, the learner
should be able to:
Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation Describe physical properties of alkanes Explain trends in melting and boiling points Relate molecular size to physical properties Compare solubility in different solvents |
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents. |
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials |
KLB Secondary Chemistry Form 3, Pages 94-96
KLB Secondary Chemistry Form 3, Pages 96-97 |
|
3 | 3 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life |
By the end of the
lesson, the learner
should be able to:
Write equations for complete and incomplete combustion Explain substitution reactions with halogens Describe conditions for halogenation reactions Name halogenated alkane products |
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
|
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials |
KLB Secondary Chemistry Form 3, Pages 97-98
|
|
3 | 4 |
ORGANIC CHEMISTRY I
|
Introduction to Alkenes and Functional Groups
|
By the end of the
lesson, the learner
should be able to:
Define alkenes and unsaturation Identify the C=C functional group Write general formula for alkenes (CₙH₂ₙ) Compare alkenes with alkanes |
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
|
Alkene series charts, Molecular models showing double bonds, Functional group posters
|
KLB Secondary Chemistry Form 3, Pages 100-101
|
|
3 | 5 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkenes
Isomerism in Alkenes - Branching and Positional |
By the end of the
lesson, the learner
should be able to:
Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
|
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
Molecular model kits, Isomerism worksheets, Geometric isomer models |
KLB Secondary Chemistry Form 3, Pages 101-102
|
|
4 | 1-2 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
Alternative Preparation of Ethene and Physical Properties Chemical Properties of Alkenes - Addition Reactions |
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene Describe catalytic dehydration using aluminum oxide Compare different preparation methods List physical properties of ethene Explain trends in alkene physical properties |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size. |
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts Addition reaction charts, Mechanism diagrams, Chemical equation worksheets |
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
4 | 3 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
|
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
|
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
|
KLB Secondary Chemistry Form 3, Pages 107-108
|
|
4 | 4 |
ORGANIC CHEMISTRY I
|
Tests for Alkenes and Uses
Introduction to Alkynes and Triple Bond |
By the end of the
lesson, the learner
should be able to:
Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture |
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
|
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts |
KLB Secondary Chemistry Form 3, Pages 108-109
|
|
4 | 5 |
ORGANIC CHEMISTRY I
|
Nomenclature and Isomerism in Alkynes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
|
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 110-111
|
|
5 | 1-2 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes Addition Reactions of Alkynes and Chemical Tests |
By the end of the
lesson, the learner
should be able to:
Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation Write equations for halogenation of alkynes Describe hydrogenation and hydrohalogenation Compare reaction rates: alkynes vs alkenes Perform chemical tests for alkynes |
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes. |
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison |
KLB Secondary Chemistry Form 3, Pages 111-112
KLB Secondary Chemistry Form 3, Pages 113-115 |
|
5 | 3 |
ORGANIC CHEMISTRY I
CHLORINE AND ITS COMPOUNDS CHLORINE AND ITS COMPOUNDS |
Uses of Alkynes and Industrial Applications
Introduction and Preparation of Chlorine Physical Properties of Chlorine |
By the end of the
lesson, the learner
should be able to:
List industrial uses of alkynes Explain oxy-acetylene welding applications Describe use in synthetic fiber production Evaluate importance as chemical starting materials |
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
|
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 115-116
|
|
5 | 4 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals |
By the end of the
lesson, the learner
should be able to:
Investigate the reaction of chlorine with water. Explain the formation of chlorine water. Test the acidic nature of chlorine water. Demonstrate the bleaching action of chlorine. |
Practical work: Experiment 6.3 - Bubbling chlorine through water. Testing with litmus papers (dry vs moist). Testing with colored flower petals. Formation of green-yellow chlorine water. Writing equations: Cl2 + H2O → HCl + HOCl. Discussion: Formation of hypochlorous acid and hydrochloric acid.
|
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars |
KLB Secondary Chemistry Form 4, Pages 197-199
|
|
5 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Non-metals
Oxidising Properties of Chlorine Reaction of Chlorine with Alkali Solutions |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of chlorine with non-metals. Demonstrate reaction with phosphorus and hydrogen. Write equations for non-metal chloride formation. Explain the vigorous nature of these reactions. |
Practical work: Experiment 6.5 - Warming red phosphorus and lowering into chlorine. Demonstration: Burning hydrogen jet in chlorine. Observations: White fumes of phosphorus chlorides, hydrogen chloride formation. Writing equations: P4 + 6Cl2 → 4PCl3, H2 + Cl2 → 2HCl. Discussion: Formation of covalent chlorides.
|
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer |
KLB Secondary Chemistry Form 4, Pages 201
|
|
6 | 1-2 |
CHLORINE AND ITS COMPOUNDS
|
Oxidising Properties - Displacement Reactions
Test for Chloride Ions Uses of Chlorine and its Compounds Hydrogen Chloride - Laboratory Preparation |
By the end of the
lesson, the learner
should be able to:
Investigate displacement reactions of chlorine with halides. Test reactions with bromides and iodides. Write ionic equations for displacement reactions. Explain the order of reactivity of halogens. List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine. |
Practical work: Experiment 6.8 - Bubbling chlorine through potassium bromide and potassium iodide solutions. Observations: Colorless to orange (Br2), colorless to brown (I2). Writing ionic equations: Cl2 + 2Br⁻ → 2Cl⁻ + Br2, Cl2 + 2I⁻ → 2Cl⁻ + I Discussion: Displacement as evidence of relative reactivity.
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications. |
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars |
KLB Secondary Chemistry Form 4, Pages 203-204
KLB Secondary Chemistry Form 4, Pages 205-207 |
|
6 | 3 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Hydrogen Chloride
|
By the end of the
lesson, the learner
should be able to:
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents. |
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
|
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
|
KLB Secondary Chemistry Form 4, Pages 208-211
|
|
6 | 4 |
CHLORINE AND ITS COMPOUNDS
|
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid |
By the end of the
lesson, the learner
should be able to:
Describe industrial production of hydrochloric acid. Identify raw materials and conditions used. Explain the controlled combustion process. Draw flow diagrams of the industrial process. |
Study of Figure 6.4 - Large-scale manufacture setup. Discussion: Raw materials (H2 from electrolysis/cracking, Cl2 from electrolysis). Controlled combustion: H2 + Cl2 → 2HCl in jet burner. Dissolving HCl gas in water over glass beads. Safety: Explosive nature of H2/Cl2 mixture, use of excess chlorine. Industrial considerations: 35% concentration, transport in rubber-lined steel tanks.
|
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams |
KLB Secondary Chemistry Form 4, Pages 211-212
|
|
6 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Environmental Pollution by Chlorine Compounds and Summary
|
By the end of the
lesson, the learner
should be able to:
Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry. |
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts.
|
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
|
KLB Secondary Chemistry Form 4, Pages 213-215
|
|
7-9 |
END OF YEAR EXAMINATION AND CLOSING OF SCHOOL |
Your Name Comes Here