If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
ORGANIC CHEMISTRY II
|
Laboratory Preparation of Ethanol
|
By the end of the
lesson, the learner
should be able to:
Describe fermentation process - Prepare ethanol in laboratory - Write equation for glucose fermentation - Explain role of yeast and conditions needed |
Experiment 6.1: Fermentation of sugar solution with yeast
- Set up apparatus for 2-3 days - Observe gas evolution - Test for CO₂ with lime water - Smell final product |
Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer
|
KLB Secondary Chemistry Form 4, Pages 171-172
|
|
2 | 2 |
ORGANIC CHEMISTRY II
|
Industrial Preparation and Physical Properties
Chemical Properties of Alkanols I |
By the end of the
lesson, the learner
should be able to:
Explain hydration of ethene method - Compare laboratory and industrial methods - Analyze physical properties of alkanols - Relate properties to molecular structure |
Study ethene hydration using phosphoric acid catalyst
- Compare fermentation vs industrial methods - Analyze Table 6.3 - physical properties - Discussion on hydrogen bonding effects |
Table 6.3, industrial process diagrams, ethene structure models, property comparison charts
Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes |
KLB Secondary Chemistry Form 4, Pages 171-173
|
|
2 | 3-4 |
ORGANIC CHEMISTRY II
|
Chemical Properties of Alkanols II
Uses of Alkanols and Health Effects Introduction to Alkanoic Acids Laboratory Preparation of Ethanoic Acid Physical and Chemical Properties of Alkanoic Acids |
By the end of the
lesson, the learner
should be able to:
Investigate oxidation and esterification reactions - Test oxidizing agents on ethanol - Prepare esters from alkanols - Explain dehydration reactions Prepare ethanoic acid by oxidation - Write equations for preparation - Set up oxidation apparatus - Identify product by testing |
Complete Experiment 6.2: Test with acidified K₂Cr₂O₇ and KMnO₄
- Observe color changes - Esterification with ethanoic acid - Study dehydration conditions Experiment 6.3: Oxidize ethanol using acidified KMnO₄ - Set up heating and distillation apparatus - Collect distillate at 118°C - Test product properties |
Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus
Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask 2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes |
KLB Secondary Chemistry Form 4, Pages 173-176
KLB Secondary Chemistry Form 4, Pages 179-180 |
|
2 | 5 |
ORGANIC CHEMISTRY II
|
Esterification and Uses of Alkanoic Acids
|
By the end of the
lesson, the learner
should be able to:
Explain ester formation process - Write esterification equations - State uses of alkanoic acids - Prepare simple esters |
Complete esterification experiments
- Study concentrated H₂SO₄ as catalyst - Write general esterification equation - Discuss applications in food, drugs, synthetic fibres |
Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water
|
KLB Secondary Chemistry Form 4, Pages 182-183
|
|
3 | 1 |
ORGANIC CHEMISTRY II
|
Introduction to Detergents and Soap Preparation
|
By the end of the
lesson, the learner
should be able to:
Define detergents and classify types - Explain saponification process - Prepare soap in laboratory - Compare soapy and soapless detergents |
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH - Add salt for salting out - Test soap formation |
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
|
KLB Secondary Chemistry Form 4, Pages 183-186
|
|
3 | 2 |
ORGANIC CHEMISTRY II
|
Mode of Action of Soap and Hard Water Effects
|
By the end of the
lesson, the learner
should be able to:
Explain soap molecule structure - Describe cleaning mechanism - Investigate hard water effects - Compare soap performance in different waters |
Study hydrophobic and hydrophilic ends
- Demonstrate micelle formation - Test soap in distilled vs hard water - Observe scum formation - Write precipitation equations |
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
|
KLB Secondary Chemistry Form 4, Pages 186-188
|
|
3 | 3-4 |
ORGANIC CHEMISTRY II
|
Soapless Detergents and Environmental Effects
Introduction to Polymers and Addition Polymerization Addition Polymers - Types and Properties |
By the end of the
lesson, the learner
should be able to:
Explain soapless detergent preparation - Compare advantages/disadvantages - Discuss environmental impact - Analyze pollution effects Identify different addition polymers - Draw structures from monomers - Name common polymers - Relate structure to properties |
Study alkylbenzene sulphonate preparation
- Compare Table 6.9 - soap vs soapless - Discussion on eutrophication and biodegradability - Environmental awareness Study polystyrene, PTFE, perspex formation - Practice identifying monomers from polymer structures - Work through polymer calculation examples - Properties analysis |
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10 |
KLB Secondary Chemistry Form 4, Pages 188-191
KLB Secondary Chemistry Form 4, Pages 195-197 |
|
3 | 5 |
ORGANIC CHEMISTRY II
|
Condensation Polymerization and Natural Polymers
|
By the end of the
lesson, the learner
should be able to:
Explain condensation polymerization - Compare with addition polymerization - Study natural polymers - Analyze nylon formation |
Study nylon 6,6 formation from diamine and dioic acid
- Natural polymers: starch, protein, rubber - Vulcanization process - Compare synthetic vs natural |
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples
|
KLB Secondary Chemistry Form 4, Pages 197-200
|
|
4 | 1 |
ORGANIC CHEMISTRY II
|
Polymer Properties and Applications
Comprehensive Problem Solving and Integration |
By the end of the
lesson, the learner
should be able to:
Compare advantages and disadvantages of synthetic polymers - State uses of different polymers - Discuss environmental concerns - Analyze polymer selection |
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability - Disadvantages: non-biodegradability, toxic gases - Application analysis |
Table 6.10, polymer application samples, environmental impact studies, product examples
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts |
KLB Secondary Chemistry Form 4, Pages 200-201
|
|
4 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Nitric(V) Acid and Introduction to Nitrates
|
By the end of the
lesson, the learner
should be able to:
List major industrial uses of nitric acid Explain importance in fertilizer manufacture Describe use in explosives and dyes Introduce nitrate salts and their preparation |
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
|
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
|
KLB Secondary Chemistry Form 3, Pages 151
|
|
4 | 3-4 |
NITROGEN AND ITS COMPOUNDS
|
Action of Heat on Nitrates - Decomposition Patterns
Test for Nitrates - Brown Ring Test |
By the end of the
lesson, the learner
should be able to:
Test thermal decomposition of different nitrates Classify decomposition patterns based on metal reactivity Identify products formed on heating Write equations for decomposition reactions Perform brown ring test for nitrates Explain mechanism of complex formation Use alternative copper test method Apply tests to unknown samples |
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples. |
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples |
KLB Secondary Chemistry Form 3, Pages 151-153
KLB Secondary Chemistry Form 3, Pages 153-154 |
|
4 | 5 |
NITROGEN AND ITS COMPOUNDS
|
Environmental Pollution by Nitrogen Compounds
Pollution Control and Environmental Solutions |
By the end of the
lesson, the learner
should be able to:
Explain sources of nitrogen pollution Describe formation of acid rain Discuss effects on environment and health Evaluate pollution control measures |
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
|
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data |
KLB Secondary Chemistry Form 3, Pages 154-157
|
|
5 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Comprehensive Problem Solving - Nitrogen Chemistry
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems involving nitrogen compounds Apply knowledge to industrial processes Calculate yields and percentages in reactions Analyze experimental data and results |
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
|
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
5 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Practical Assessment - Nitrogen Compounds
|
By the end of the
lesson, the learner
should be able to:
Demonstrate practical skills in nitrogen chemistry Perform qualitative analysis of nitrogen compounds Apply safety procedures correctly Interpret experimental observations accurately |
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
|
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
5 | 3-4 |
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS |
Industrial Applications and Economic Importance
Chapter Review and Integration Extraction of Sulphur Allotropes of Sulphur |
By the end of the
lesson, the learner
should be able to:
Evaluate economic importance of nitrogen industry Analyze industrial production costs and benefits Compare different manufacturing processes Assess impact on agricultural productivity Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process. |
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram. |
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum) Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers |
KLB Secondary Chemistry Form 3, Pages 119-157
KLB Secondary Chemistry Form 4, Pages 160-161 |
|
5 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Physical Properties of Sulphur - Solubility
Physical Properties of Sulphur - Effect of Heat Chemical Properties of Sulphur - Reactions with Elements |
By the end of the
lesson, the learner
should be able to:
Investigate the solubility of sulphur in different solvents. Explain the molecular structure of sulphur. Compare solubility in polar and non-polar solvents. State the physical properties of sulphur. |
Practical work: Experiment 2(a) - Testing solubility of sulphur in water, benzene, methylbenzene, and carbon(IV) sulphide. Observation and recording in Table Discussion: Explain why sulphur dissolves in organic solvents but not water. Drawing: Puckered ring structure of S8 molecule.
|
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner |
KLB Secondary Chemistry Form 4, Pages 163-164
|
|
6 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Chemical Properties of Sulphur - Reactions with Acids
Uses of Sulphur and Introduction to Oxides |
By the end of the
lesson, the learner
should be able to:
Investigate the reaction of sulphur with concentrated acids. Identify the products formed in these reactions. Write balanced equations for oxidation reactions. Test for sulphate ions using barium chloride. |
Practical work: Experiment 3(b) - Reactions with concentrated nitric(V) acid, sulphuric(VI) acid, and hydrochloric acid. Testing with barium chloride solution. Observation: Formation of sulphate ions, brown fumes, no reaction with HCl. Discussion: Sulphur as a reducing agent, acids as oxidizing agents.
|
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams |
KLB Secondary Chemistry Form 4, Pages 167-168
|
|
6 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Preparation of Sulphur(IV) Oxide
Physical and Chemical Properties of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of sulphur(IV) oxide. Set up apparatus for gas preparation and collection. Write balanced equations for the preparation reactions. Explain the drying and collection methods used. |
Practical work: Experiment 4 - Preparation of SO2 using sodium sulphite and dilute HCl. Apparatus setup: Round-bottomed flask, delivery tube, gas jars. Collection: Downward delivery method. Testing: Using acidified potassium chromate(VI) paper. Alternative method: Copper + concentrated H2SO
|
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 170-171
|
|
6 | 3-4 |
SULPHUR AND ITS COMPOUNDS
|
Bleaching Action of Sulphur(IV) Oxide
Reducing Action of Sulphur(IV) Oxide Oxidising Action of Sulphur(IV) Oxide |
By the end of the
lesson, the learner
should be able to:
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing. Investigate SO2 as a reducing agent. Test reactions with various oxidizing agents. Write ionic equations for redox reactions. Identify color changes in redox reactions. |
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
Practical work: Experiment 7 - Testing SO2 with acidified potassium dichromate(VI), potassium manganate(VII), bromine water, iron(III) chloride. Recording observations in Table 6. Color changes: Orange to green, purple to colorless, brown to colorless, yellow to pale green. Writing half-equations and overall equations. |
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 173
KLB Secondary Chemistry Form 4, Pages 173-176 |
|
6 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Test for Sulphate and Sulphite Ions & Uses of SO2
|
By the end of the
lesson, the learner
should be able to:
Carry out confirmatory tests for sulphate and sulphite ions. Distinguish between sulphate and sulphite using chemical tests. List the uses of sulphur(IV) oxide. Explain the applications in industry. |
Practical work: Experiment 9 - Testing sodium sulphate and sodium sulphite with barium chloride. Adding dilute HCl to precipitates. Recording observations in Table 8. Discussion: BaSO4 insoluble in acid, BaSO3 dissolves. Uses: Raw material for H2SO4, bleaching wood pulp, fumigant, preservative.
|
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
|
KLB Secondary Chemistry Form 4, Pages 178-179
|
|
7 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
|
By the end of the
lesson, the learner
should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process. |
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
|
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
|
KLB Secondary Chemistry Form 4, Pages 179-181
|
|
7 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties |
By the end of the
lesson, the learner
should be able to:
Investigate the dehydrating properties of concentrated H2SO Demonstrate removal of water from hydrated salts. Show dehydration of organic compounds. Explain the hygroscopic nature of the acid. |
Practical work: Experiment 10 - Adding concentrated H2SO4 to copper(II) sulphate crystals, sucrose crystals, ethanol. Observations: Blue to white crystals, charring of sugar, formation of ethene. Safety: Proper dilution technique - acid to water. Testing evolved gases. Discussion: Chemical vs physical dehydration.
|
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner |
KLB Secondary Chemistry Form 4, Pages 181-183
|
|
7 | 3-4 |
SULPHUR AND ITS COMPOUNDS
|
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
Reactions of Dilute Sulphuric(VI) Acid - With Metals |
By the end of the
lesson, the learner
should be able to:
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions. Investigate reactions of dilute H2SO4 with metals. Compare reactivity of different metals. Test for hydrogen gas evolution. Relate reactions to reactivity series. |
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
Practical work: Experiment 11 - Reactions with magnesium, zinc, copper. Testing evolved gas with burning splint. Recording observations in Table 10. Discussion: More reactive metals above hydrogen displace it. Vigour of reaction decreases down reactivity series. Writing ionic equations. |
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart |
KLB Secondary Chemistry Form 4, Pages 184
KLB Secondary Chemistry Form 4, Pages 184-185 |
|
7 | 5 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
|
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates. |
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
|
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
|
KLB Secondary Chemistry Form 4, Pages 185-186
|
|
8 | 1 |
SULPHUR AND ITS COMPOUNDS
|
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
Hydrogen Sulphide - Preparation and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of dilute H2SO4 with metal oxides and hydroxides. Identify neutralization reactions. Explain formation of insoluble sulphates. Write equations for acid-base reactions. |
Practical work: Experiment 13 - Reactions with magnesium oxide, zinc oxide, copper(II) oxide, lead(II) oxide, sodium hydroxide. Recording observations in Table 1 Discussion: Salt and water formation, immediate stopping with lead(II) oxide due to insoluble PbSO Acid-base neutralization concept.
|
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard |
KLB Secondary Chemistry Form 4, Pages 186-187
|
|
8 | 2 |
SULPHUR AND ITS COMPOUNDS
|
Chemical Properties of Hydrogen Sulphide
|
By the end of the
lesson, the learner
should be able to:
Investigate H2S as a reducing agent. Test reactions with oxidizing agents. Demonstrate precipitation of metal sulphides. Write ionic equations for redox reactions. |
Practical demonstrations: H2S with bromine water, iron(III) chloride, acidified KMnO4, K2Cr2O7. Precipitation tests: H2S with copper(II) sulphate, lead(II) nitrate, zinc sulphate. Color changes: Brown to colorless, yellow to green, purple to colorless. Formation of black, yellow, and white precipitates.
|
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
|
KLB Secondary Chemistry Form 4, Pages 188-190
|
|
8 | 3-4 |
SULPHUR AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS |
Pollution Effects and Summary
Introduction and Preparation of Chlorine Physical Properties of Chlorine Chemical Properties of Chlorine - Reaction with Water Chemical Properties of Chlorine - Reaction with Metals |
By the end of the
lesson, the learner
should be able to:
Explain environmental pollution by sulphur compounds. Describe formation and effects of acid rain. Suggest methods to reduce sulphur pollution. Summarize key concepts of sulphur chemistry. Investigate the physical properties of chlorine gas. Explain the method of collection used for chlorine. Test the solubility of chlorine in water. State the density and color of chlorine gas. |
Discussion: Sources of SO2 pollution - burning fossil fuels, metal extraction, H2SO4 manufacture. Formation of acid rain: SO2 + H2O → H2SO3 → H2SO Effects: Plant damage, aquatic life destruction, building corrosion, soil acidification. Control measures: Scrubbing with Ca(OH)2, catalytic converters. Revision: Key reactions, properties, uses.
Practical work: Experiment 6.2 - Testing chlorine gas preserved from previous experiment. Recording observations in Table 6. Testing: Color, smell (caution - no direct smelling), density, solubility in water. Demonstration: Inverting gas jar in water trough. Discussion: Why collected by downward delivery. |
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars |
KLB Secondary Chemistry Form 4, Pages 190-194
KLB Secondary Chemistry Form 4, Pages 196-197 |
|
8 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Chemical Properties of Chlorine - Reaction with Non-metals
Oxidising Properties of Chlorine |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of chlorine with non-metals. Demonstrate reaction with phosphorus and hydrogen. Write equations for non-metal chloride formation. Explain the vigorous nature of these reactions. |
Practical work: Experiment 6.5 - Warming red phosphorus and lowering into chlorine. Demonstration: Burning hydrogen jet in chlorine. Observations: White fumes of phosphorus chlorides, hydrogen chloride formation. Writing equations: P4 + 6Cl2 → 4PCl3, H2 + Cl2 → 2HCl. Discussion: Formation of covalent chlorides.
|
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes |
KLB Secondary Chemistry Form 4, Pages 201
|
|
9 | 1 |
CHLORINE AND ITS COMPOUNDS
|
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions Test for Chloride Ions |
By the end of the
lesson, the learner
should be able to:
Investigate reactions of chlorine with alkalis. Compare reactions with cold dilute and hot concentrated alkalis. Write equations for formation of chlorates and hypochlorites. Explain formation of bleaching powder. |
Practical work: Experiment 6.7 - Bubbling chlorine through cold dilute NaOH and hot concentrated NaOH. Recording observations in Table 6. Formation of pale-yellow solution (cold) vs colorless solution (hot). Equations: 3Cl2 + 6NaOH → 5NaCl + NaClO3 + 3H2O (hot), Cl2 + 2NaOH → NaCl + NaClO + H2O (cold). Discussion: Industrial production of bleaching powder.
|
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner |
KLB Secondary Chemistry Form 4, Pages 202-203
|
|
9 | 2 |
CHLORINE AND ITS COMPOUNDS
|
Uses of Chlorine and its Compounds
|
By the end of the
lesson, the learner
should be able to:
List the industrial uses of chlorine. Explain the use of chlorine in water treatment. Describe manufacture of chlorine compounds. Relate properties to uses of chlorine. |
Discussion: Industrial applications - HCl manufacture, bleaching agents for cotton and paper industries, water treatment and sewage plants. Study Figure 6.3(a) - bleaching chemicals. Applications: Chloroform (anaesthetic), solvents (trichloroethane), CFCs, PVC plastics, pesticides (DDT), germicides and fungicides. Q/A: Relating chemical properties to practical applications.
|
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
|
KLB Secondary Chemistry Form 4, Pages 205-207
|
|
9 | 3-4 |
CHLORINE AND ITS COMPOUNDS
|
Hydrogen Chloride - Laboratory Preparation
Chemical Properties of Hydrogen Chloride Large-scale Manufacture of Hydrochloric Acid |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used. Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents. |
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions. |
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models |
KLB Secondary Chemistry Form 4, Pages 207-208
KLB Secondary Chemistry Form 4, Pages 208-211 |
|
9 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary |
By the end of the
lesson, the learner
should be able to:
List the industrial uses of hydrochloric acid. Explain applications in metal treatment. Describe use in water treatment and manufacturing. Relate acid properties to industrial applications. |
Discussion: Applications - rust removal and descaling, galvanizing preparation, electroplating preparation, water treatment (chlorination), sewage treatment. Manufacturing uses: dyes, drugs, photographic materials (AgCl), pH control in industries. Q/A: How acid properties make HCl suitable for these uses. Case studies: Metal cleaning processes, water purification systems.
|
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions |
KLB Secondary Chemistry Form 4, Pages 212-213
|
Your Name Comes Here