Home






SCHEME OF WORK
Chemistry
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 4
ORGANIC CHEMISTRY II
Laboratory Preparation of Ethanol
By the end of the lesson, the learner should be able to:
Describe fermentation process
- Prepare ethanol in laboratory
- Write equation for glucose fermentation
- Explain role of yeast and conditions needed
Experiment 6.1: Fermentation of sugar solution with yeast
- Set up apparatus for 2-3 days
- Observe gas evolution
- Test for CO₂ with lime water
- Smell final product
Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer
KLB Secondary Chemistry Form 4, Pages 171-172
2 5
ORGANIC CHEMISTRY II
Industrial Preparation and Physical Properties
Chemical Properties of Alkanols I
Chemical Properties of Alkanols II
By the end of the lesson, the learner should be able to:
Explain hydration of ethene method
- Compare laboratory and industrial methods
- Analyze physical properties of alkanols
- Relate properties to molecular structure
Study ethene hydration using phosphoric acid catalyst
- Compare fermentation vs industrial methods
- Analyze Table 6.3 - physical properties
- Discussion on hydrogen bonding effects
Table 6.3, industrial process diagrams, ethene structure models, property comparison charts
Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes
Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus
KLB Secondary Chemistry Form 4, Pages 171-173
3 1
ORGANIC CHEMISTRY II
Uses of Alkanols and Health Effects
Introduction to Alkanoic Acids
By the end of the lesson, the learner should be able to:
State various uses of alkanols
- Explain health effects of alcohol consumption
- Discuss methylated spirits
- Analyze alcohol in society
Discussion on alkanol applications as solvents, fuels, antiseptics
- Health effects of alcohol consumption
- Methylated spirits composition
- Social implications
Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials
Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books
KLB Secondary Chemistry Form 4, Pages 176-177
3 2
ORGANIC CHEMISTRY II
Laboratory Preparation of Ethanoic Acid
Physical and Chemical Properties of Alkanoic Acids
By the end of the lesson, the learner should be able to:
Prepare ethanoic acid by oxidation
- Write equations for preparation
- Set up oxidation apparatus
- Identify product by testing
Experiment 6.3: Oxidize ethanol using acidified KMnO₄
- Set up heating and distillation apparatus
- Collect distillate at 118°C
- Test product properties
Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask
2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes
KLB Secondary Chemistry Form 4, Pages 179-180
3 3-4
ORGANIC CHEMISTRY II
Esterification and Uses of Alkanoic Acids
Introduction to Detergents and Soap Preparation
Mode of Action of Soap and Hard Water Effects
By the end of the lesson, the learner should be able to:
Explain ester formation process
- Write esterification equations
- State uses of alkanoic acids
- Prepare simple esters
Define detergents and classify types
- Explain saponification process
- Prepare soap in laboratory
- Compare soapy and soapless detergents
Complete esterification experiments
- Study concentrated H₂SO₄ as catalyst
- Write general esterification equation
- Discuss applications in food, drugs, synthetic fibres
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH
- Add salt for salting out
- Test soap formation
Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
KLB Secondary Chemistry Form 4, Pages 182-183
KLB Secondary Chemistry Form 4, Pages 183-186
3 5
ORGANIC CHEMISTRY II
Soapless Detergents and Environmental Effects
By the end of the lesson, the learner should be able to:
Explain soapless detergent preparation
- Compare advantages/disadvantages
- Discuss environmental impact
- Analyze pollution effects
Study alkylbenzene sulphonate preparation
- Compare Table 6.9 - soap vs soapless
- Discussion on eutrophication and biodegradability
- Environmental awareness
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents
KLB Secondary Chemistry Form 4, Pages 188-191
4 1
ORGANIC CHEMISTRY II
Introduction to Polymers and Addition Polymerization
By the end of the lesson, the learner should be able to:
Define polymers, monomers, and polymerization
- Explain addition polymerization
- Draw polymer structures
- Calculate polymer properties
Study polymer concept and terminology
- Practice drawing addition polymers from monomers
- Examples: polyethene, polypropene, PVC
- Calculate molecular masses
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
KLB Secondary Chemistry Form 4, Pages 191-195
4 2
ORGANIC CHEMISTRY II
Addition Polymers - Types and Properties
Condensation Polymerization and Natural Polymers
By the end of the lesson, the learner should be able to:
Identify different addition polymers
- Draw structures from monomers
- Name common polymers
- Relate structure to properties
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures
- Work through polymer calculation examples
- Properties analysis
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples
KLB Secondary Chemistry Form 4, Pages 195-197
4 3-4
ORGANIC CHEMISTRY II
ORGANIC CHEMISTRY II
NITROGEN AND ITS COMPOUNDS
Polymer Properties and Applications
Comprehensive Problem Solving and Integration
Uses of Nitric(V) Acid and Introduction to Nitrates
By the end of the lesson, the learner should be able to:
Compare advantages and disadvantages of synthetic polymers
- State uses of different polymers
- Discuss environmental concerns
- Analyze polymer selection
Solve complex problems involving alkanols and acids
- Apply knowledge to practical situations
- Integrate polymer concepts
- Practice examination questions
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability
- Disadvantages: non-biodegradability, toxic gases
- Application analysis
Worked examples on organic synthesis
- Problem-solving on isomers, reactions, polymers
- Integration of all unit concepts
- Practice examination-style questions
Table 6.10, polymer application samples, environmental impact studies, product examples
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
KLB Secondary Chemistry Form 4, Pages 200-201
KLB Secondary Chemistry Form 4, Pages 167-201
4 5
NITROGEN AND ITS COMPOUNDS
Action of Heat on Nitrates - Decomposition Patterns
By the end of the lesson, the learner should be able to:
Test thermal decomposition of different nitrates
Classify decomposition patterns based on metal reactivity
Identify products formed on heating
Write equations for decomposition reactions
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
KLB Secondary Chemistry Form 3, Pages 151-153
5 1
NITROGEN AND ITS COMPOUNDS
Test for Nitrates - Brown Ring Test
By the end of the lesson, the learner should be able to:
Perform brown ring test for nitrates
Explain mechanism of complex formation
Use alternative copper test method
Apply tests to unknown samples
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
KLB Secondary Chemistry Form 3, Pages 153-154
5 2
NITROGEN AND ITS COMPOUNDS
Environmental Pollution by Nitrogen Compounds
Pollution Control and Environmental Solutions
By the end of the lesson, the learner should be able to:
Explain sources of nitrogen pollution
Describe formation of acid rain
Discuss effects on environment and health
Evaluate pollution control measures
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
KLB Secondary Chemistry Form 3, Pages 154-157
5 3-4
NITROGEN AND ITS COMPOUNDS
Comprehensive Problem Solving - Nitrogen Chemistry
Laboratory Practical Assessment - Nitrogen Compounds
Industrial Applications and Economic Importance
By the end of the lesson, the learner should be able to:
Solve complex problems involving nitrogen compounds
Apply knowledge to industrial processes
Calculate yields and percentages in reactions
Analyze experimental data and results
Demonstrate practical skills in nitrogen chemistry
Perform qualitative analysis of nitrogen compounds
Apply safety procedures correctly
Interpret experimental observations accurately
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
KLB Secondary Chemistry Form 3, Pages 119-157
5 5
NITROGEN AND ITS COMPOUNDS
Chapter Review and Integration
By the end of the lesson, the learner should be able to:
Synthesize all nitrogen chemistry concepts
Compare preparation methods for nitrogen compounds
Relate structure to properties and reactivity
Connect laboratory and industrial processes
Comprehensive review: Concept mapping of all nitrogen compounds and their relationships. Comparison tables: Preparation methods, properties, uses. Flow chart: Nitrogen cycle in industry and environment. Integration exercises connecting all topics.
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
KLB Secondary Chemistry Form 3, Pages 119-157
6 1
SULPHUR AND ITS COMPOUNDS
Extraction of Sulphur
Allotropes of Sulphur
Physical Properties of Sulphur - Solubility
By the end of the lesson, the learner should be able to:
Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process.
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram.
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure
KLB Secondary Chemistry Form 4, Pages 160-161
6 2
SULPHUR AND ITS COMPOUNDS
Physical Properties of Sulphur - Effect of Heat
Chemical Properties of Sulphur - Reactions with Elements
Chemical Properties of Sulphur - Reactions with Acids
By the end of the lesson, the learner should be able to:
Investigate the effect of heat on sulphur. Describe changes in color and viscosity of molten sulphur. Explain the molecular changes occurring during heating. Identify "flowers of sulphur".
Practical work: Experiment 2(b) - Heating sulphur and observing changes. Observation: Color changes from yellow to amber to reddish-brown to black. Testing viscosity by inverting test tube. Demonstration: Sublimation of sulphur vapour. Discussion: Breaking of S8 rings to form long chains.
Powdered sulphur, Test tubes, Bunsen burner, Cold surface for condensation, Thermometer, Safety equipment
Sulphur, Iron powder, Copper powder, Oxygen gas jar, Deflagrating spoon, Moist litmus papers, Test tubes, Bunsen burner
Sulphur powder, Concentrated HNO3, Concentrated H2SO4, Concentrated HCl, Barium chloride solution, Test tubes, Fume cupboard access
KLB Secondary Chemistry Form 4, Pages 164-165
6 3-4
SULPHUR AND ITS COMPOUNDS
Uses of Sulphur and Introduction to Oxides
Preparation of Sulphur(IV) Oxide
Physical and Chemical Properties of Sulphur(IV) Oxide
Bleaching Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
List the uses of sulphur in industry and agriculture. Identify the two main oxides of sulphur. Compare sulphur(IV) oxide and sulphur(VI) oxide. Plan laboratory preparation methods for sulphur oxides.
Investigate the bleaching properties of SO Compare SO2 bleaching with chlorine bleaching. Explain the mechanism of SO2 bleaching. Relate bleaching to paper manufacturing.
Discussion: Industrial uses - sulphuric acid manufacture, fungicide, vulcanization of rubber, bleaching agents, dyes and fireworks. Q/A: Review oxidation states of sulphur in compounds. Introduction: SO2 and SO3 as important compounds. Preparation planning: Methods for laboratory preparation of SO
Practical work: Experiment 6 - Placing colored flower petals in SO2 gas. Observation: Temporary bleaching effect. Discussion: SO2 + H2O → H2SO3, reduction of organic dyes. Comparison: Permanent vs temporary bleaching. Application: Paper industry bleaching processes.
Charts showing uses of sulphur, Samples of vulcanized rubber, Fungicides, Industrial photographs, Textbook diagrams
Sodium sulphite, Dilute HCl, Round-bottomed flask, Delivery tubes, Gas jars, Concentrated H2SO4 for drying, Acidified potassium chromate(VI) paper
SO2 gas from previous preparation, Litmus papers, Universal indicator, 0.1M NaOH solution, Water, Test tubes, Safety equipment
Colored flower petals (red/blue), SO2 gas jars, Hand lens for observation, Charts comparing bleaching agents
KLB Secondary Chemistry Form 4, Pages 168-170
KLB Secondary Chemistry Form 4, Pages 173
6 5
SULPHUR AND ITS COMPOUNDS
Reducing Action of Sulphur(IV) Oxide
By the end of the lesson, the learner should be able to:
Investigate SO2 as a reducing agent. Test reactions with various oxidizing agents. Write ionic equations for redox reactions. Identify color changes in redox reactions.
Practical work: Experiment 7 - Testing SO2 with acidified potassium dichromate(VI), potassium manganate(VII), bromine water, iron(III) chloride. Recording observations in Table 6. Color changes: Orange to green, purple to colorless, brown to colorless, yellow to pale green. Writing half-equations and overall equations.
SO2 gas, Acidified K2Cr2O7, Acidified KMnO4, Bromine water, Iron(III) chloride solution, Concentrated HNO3, Test tubes
KLB Secondary Chemistry Form 4, Pages 173-176
7 1
SULPHUR AND ITS COMPOUNDS
Oxidising Action of Sulphur(IV) Oxide
Test for Sulphate and Sulphite Ions & Uses of SO2
By the end of the lesson, the learner should be able to:
Investigate SO2 as an oxidizing agent. Demonstrate reaction with stronger reducing agents. Explain the dual nature of SO Write equations for oxidation reactions by SO
Practical work: Experiment 8 - Lowering burning magnesium into SO2 gas. Observation: Continued burning, white fumes of MgO, yellow specks of sulphur. Reaction with hydrogen sulphide gas (demonstration). Discussion: SO2 decomposition providing oxygen. Writing equations: 2Mg + SO2 → 2MgO + S.
SO2 gas jars, Magnesium ribbon, Deflagrating spoon, Hydrogen sulphide gas, Water droppers, Safety equipment
Sodium sulphate solution, Sodium sulphite solution, Barium chloride solution, Dilute HCl, Test tubes, Charts showing industrial uses
KLB Secondary Chemistry Form 4, Pages 176-177
7 2
SULPHUR AND ITS COMPOUNDS
Large-scale Manufacture of Sulphuric(VI) Acid - Contact Process
By the end of the lesson, the learner should be able to:
Describe the contact process for manufacturing H2SO Identify raw materials and conditions used. Explain the role of catalyst in the process. Draw flow diagrams of the contact process.
Study of flow diagram: Figure 12 - Contact process. Discussion: Raw materials (sulphur, air), burning sulphur to SO Purification: Electrostatic precipitation, drying with H2SO Catalytic chamber: V2O5 catalyst at 450°C, 2-3 atmospheres. Formation of oleum: H2S2O7. Safety and environmental considerations.
Flow chart diagrams, Charts showing industrial plant, Samples of catalyst (V2O5), Photographs of Thika chemical plant, Calculator for percentage calculations
KLB Secondary Chemistry Form 4, Pages 179-181
7 3-4
SULPHUR AND ITS COMPOUNDS
Properties of Concentrated Sulphuric(VI) Acid - Dehydrating Properties
Properties of Concentrated Sulphuric(VI) Acid - Oxidizing Properties
Properties of Concentrated Sulphuric(VI) Acid - Displacement Reactions
By the end of the lesson, the learner should be able to:
Investigate the dehydrating properties of concentrated H2SO Demonstrate removal of water from hydrated salts. Show dehydration of organic compounds. Explain the hygroscopic nature of the acid.
Investigate acid displacement reactions. Demonstrate formation of volatile acids. Test the evolved gases for identification. Write equations for displacement reactions.
Practical work: Experiment 10 - Adding concentrated H2SO4 to copper(II) sulphate crystals, sucrose crystals, ethanol. Observations: Blue to white crystals, charring of sugar, formation of ethene. Safety: Proper dilution technique - acid to water. Testing evolved gases. Discussion: Chemical vs physical dehydration.
Practical work: Experiment 10 (continued) - Reactions with potassium nitrate and sodium chloride. Testing evolved gases with moist blue litmus, concentrated ammonia. Observations: Brown fumes (NO2), white fumes (HCl). Discussion: Less volatile acid displacing more volatile acids. Industrial applications.
Concentrated H2SO4, Copper(II) sulphate crystals, Sucrose, Ethanol, KMnO4 solution, Test tubes, Beakers, Safety equipment, Fume cupboard
Copper foil, Zinc granules, Charcoal powder, Concentrated H2SO4, Acidified K2Cr2O7 paper, Lime water, Test tubes, Bunsen burner
Potassium nitrate crystals, Sodium chloride crystals, Concentrated H2SO4, Moist blue litmus paper, Concentrated ammonia, Test tubes, Bunsen burner
KLB Secondary Chemistry Form 4, Pages 181-183
KLB Secondary Chemistry Form 4, Pages 184
7 5
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Metals
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with metals. Compare reactivity of different metals. Test for hydrogen gas evolution. Relate reactions to reactivity series.
Practical work: Experiment 11 - Reactions with magnesium, zinc, copper. Testing evolved gas with burning splint. Recording observations in Table 10. Discussion: More reactive metals above hydrogen displace it. Vigour of reaction decreases down reactivity series. Writing ionic equations.
Magnesium ribbon, Zinc granules, Copper turnings, Dilute H2SO4, Test tubes, Burning splints, Reactivity series chart
KLB Secondary Chemistry Form 4, Pages 184-185
8 1
SULPHUR AND ITS COMPOUNDS
Reactions of Dilute Sulphuric(VI) Acid - With Carbonates
Reactions of Dilute Sulphuric(VI) Acid - With Oxides and Hydroxides
By the end of the lesson, the learner should be able to:
Investigate reactions of dilute H2SO4 with carbonates. Test for carbon dioxide evolution. Explain why some reactions stop prematurely. Compare reactions of different metal carbonates.
Practical work: Experiment 12 - Reactions with sodium carbonate, zinc carbonate, calcium carbonate, copper(II) carbonate. Testing evolved gas with lime water. Recording observations in Table 1 Discussion: Formation of insoluble calcium sulphate coating. Effervescence and CO2 identification.
Sodium carbonate, Zinc carbonate, Calcium carbonate, Copper(II) carbonate, Dilute H2SO4, Lime water, Test tubes
Metal oxides (MgO, ZnO, CuO, PbO), NaOH solution, 2M H2SO4, Test tubes, Bunsen burner for warming
KLB Secondary Chemistry Form 4, Pages 185-186
8 2
SULPHUR AND ITS COMPOUNDS
Hydrogen Sulphide - Preparation and Physical Properties
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen sulphide. Set up apparatus for H2S preparation. State the physical properties of H2S. Explain the toxicity and safety precautions.
Demonstration: Figure 13 apparatus setup for H2S preparation. Reaction: FeS + 2HCl → FeCl2 + H2S. Collection over warm water due to solubility. Drying: Using anhydrous CaCl2 (not H2SO4). Properties: Colorless, rotten egg smell, poisonous, denser than air. Safety precautions in handling.
Iron(II) sulphide, Dilute HCl, Apparatus for gas generation, Anhydrous CaCl2, Gas jars, Safety equipment, Fume cupboard
KLB Secondary Chemistry Form 4, Pages 187-188
8 3-4
SULPHUR AND ITS COMPOUNDS
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Hydrogen Sulphide
Pollution Effects and Summary
Introduction and Preparation of Chlorine
Physical Properties of Chlorine
By the end of the lesson, the learner should be able to:
Investigate H2S as a reducing agent. Test reactions with oxidizing agents. Demonstrate precipitation of metal sulphides. Write ionic equations for redox reactions.
Define chlorine and state its position in the periodic table. Describe the occurrence of chlorine in nature. Describe laboratory preparation of chlorine gas. Write balanced equations for chlorine preparation.
Practical demonstrations: H2S with bromine water, iron(III) chloride, acidified KMnO4, K2Cr2O7. Precipitation tests: H2S with copper(II) sulphate, lead(II) nitrate, zinc sulphate. Color changes: Brown to colorless, yellow to green, purple to colorless. Formation of black, yellow, and white precipitates.
Q/A: Review Group VII elements and electron configuration of chlorine ( 8.7). Discussion: Occurrence as sodium chloride in sea water and rock salt. Practical work: Experiment 6.1 - Preparation using MnO2 + concentrated HCl. Setup apparatus as in Figure 6. Safety precautions for handling chlorine gas.
H2S gas, Bromine water, Iron(III) chloride, KMnO4, K2Cr2O7, Metal salt solutions, Test tubes, Droppers
Charts showing pollution effects, Photographs of acid rain damage, Environmental data, Summary charts of reactions, Industrial pollution control diagrams
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
KLB Secondary Chemistry Form 4, Pages 188-190
KLB Secondary Chemistry Form 4, Pages 195-196
8 5
CHLORINE AND ITS COMPOUNDS
Chemical Properties of Chlorine - Reaction with Water
Chemical Properties of Chlorine - Reaction with Metals
Chemical Properties of Chlorine - Reaction with Non-metals
By the end of the lesson, the learner should be able to:
Investigate the reaction of chlorine with water. Explain the formation of chlorine water. Test the acidic nature of chlorine water. Demonstrate the bleaching action of chlorine.
Practical work: Experiment 6.3 - Bubbling chlorine through water. Testing with litmus papers (dry vs moist). Testing with colored flower petals. Formation of green-yellow chlorine water. Writing equations: Cl2 + H2O → HCl + HOCl. Discussion: Formation of hypochlorous acid and hydrochloric acid.
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes
Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars
Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment
KLB Secondary Chemistry Form 4, Pages 197-199
9 1
CHLORINE AND ITS COMPOUNDS
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions
Oxidising Properties - Displacement Reactions
By the end of the lesson, the learner should be able to:
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions.
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer
Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts
KLB Secondary Chemistry Form 4, Pages 201-202
9 2
CHLORINE AND ITS COMPOUNDS
Test for Chloride Ions
Uses of Chlorine and its Compounds
By the end of the lesson, the learner should be able to:
Carry out confirmatory tests for chloride ions. Distinguish between different chloride tests. Practice qualitative analysis techniques. Write equations for chloride ion tests.
Practical work: Experiment 6.9 - Testing sodium chloride with concentrated H2SO4, testing with lead(II) nitrate solution. Recording observations in Table 6. Tests: White fumes with H2SO4 + ammonia test, white precipitate with Pb(NO3)2 that dissolves on warming. Writing equations: NaCl + H2SO4 → NaHSO4 + HCl, Pb²⁺ + 2Cl⁻ → PbCl
Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner
Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams
KLB Secondary Chemistry Form 4, Pages 204-205
9 3-4
CHLORINE AND ITS COMPOUNDS
Hydrogen Chloride - Laboratory Preparation
Chemical Properties of Hydrogen Chloride
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used.
Prepare aqueous hydrogen chloride (hydrochloric acid). Investigate acid properties of HCl solution. Test reactions with metals, bases, and carbonates. Compare HCl in water vs organic solvents.
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
Practical work: Experiment 6.11 - Preparation of aqueous HCl using apparatus in Figure 6. Testing with metals (Zn, Fe, Mg, Cu), NaOH, carbonates, lead nitrate. Recording observations in Table 6.7. Testing HCl in methylbenzene - no acid properties. Discussion: Ionization in water vs molecular existence in organic solvents. Writing equations for acid reactions.
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators
KLB Secondary Chemistry Form 4, Pages 207-208
KLB Secondary Chemistry Form 4, Pages 208-211
9 5
CHLORINE AND ITS COMPOUNDS
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid
Environmental Pollution by Chlorine Compounds and Summary
By the end of the lesson, the learner should be able to:
Describe industrial production of hydrochloric acid. Identify raw materials and conditions used. Explain the controlled combustion process. Draw flow diagrams of the industrial process.
Study of Figure 6.4 - Large-scale manufacture setup. Discussion: Raw materials (H2 from electrolysis/cracking, Cl2 from electrolysis). Controlled combustion: H2 + Cl2 → 2HCl in jet burner. Dissolving HCl gas in water over glass beads. Safety: Explosive nature of H2/Cl2 mixture, use of excess chlorine. Industrial considerations: 35% concentration, transport in rubber-lined steel tanks.
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
KLB Secondary Chemistry Form 4, Pages 211-212

Your Name Comes Here


Download

Feedback