If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
ORGANIC CHEMISTRY II
|
Introduction to Alkanols and Nomenclature
|
By the end of the
lesson, the learner
should be able to:
Define alkanols and identify functional group - Apply nomenclature rules for alkanols - Draw structural formulae of simple alkanols - Compare alkanols with corresponding alkanes |
Q/A: Review alkanes, alkenes from Form 3
- Study functional group -OH concept - Practice naming alkanols using IUPAC rules - Complete Table 6.2 - alkanol structures |
Molecular models, Table 6.1 and 6.2, alkanol structure charts, student books
|
KLB Secondary Chemistry Form 4, Pages 167-170
|
|
2 | 2 |
ORGANIC CHEMISTRY II
|
Isomerism in Alkanols
Laboratory Preparation of Ethanol Industrial Preparation and Physical Properties Chemical Properties of Alkanols I |
By the end of the
lesson, the learner
should be able to:
Explain positional and chain isomerism - Draw isomers of given alkanols - Name different isomeric forms - Classify isomers as primary, secondary, or tertiary |
Study positional isomerism examples (propan-1-ol vs propan-2-ol)
- Practice drawing chain isomers - Exercises on isomer identification and naming - Discussion on structural differences |
Isomer structure charts, molecular models, practice worksheets, student books
Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer Table 6.3, industrial process diagrams, ethene structure models, property comparison charts Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes |
KLB Secondary Chemistry Form 4, Pages 170-171
|
|
2 | 3 |
ORGANIC CHEMISTRY II
|
Chemical Properties of Alkanols II
Uses of Alkanols and Health Effects Introduction to Alkanoic Acids |
By the end of the
lesson, the learner
should be able to:
Investigate oxidation and esterification reactions - Test oxidizing agents on ethanol - Prepare esters from alkanols - Explain dehydration reactions |
Complete Experiment 6.2: Test with acidified K₂Cr₂O₇ and KMnO₄
- Observe color changes - Esterification with ethanoic acid - Study dehydration conditions |
Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus
Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books |
KLB Secondary Chemistry Form 4, Pages 173-176
|
|
2 | 4-5 |
ORGANIC CHEMISTRY II
|
Laboratory Preparation of Ethanoic Acid
Physical and Chemical Properties of Alkanoic Acids Esterification and Uses of Alkanoic Acids Introduction to Detergents and Soap Preparation |
By the end of the
lesson, the learner
should be able to:
Prepare ethanoic acid by oxidation - Write equations for preparation - Set up oxidation apparatus - Identify product by testing Explain ester formation process - Write esterification equations - State uses of alkanoic acids - Prepare simple esters |
Experiment 6.3: Oxidize ethanol using acidified KMnO₄
- Set up heating and distillation apparatus - Collect distillate at 118°C - Test product properties Complete esterification experiments - Study concentrated H₂SO₄ as catalyst - Write general esterification equation - Discuss applications in food, drugs, synthetic fibres |
Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask
2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper |
KLB Secondary Chemistry Form 4, Pages 179-180
KLB Secondary Chemistry Form 4, Pages 182-183 |
|
3 | 1 |
ORGANIC CHEMISTRY II
|
Mode of Action of Soap and Hard Water Effects
Soapless Detergents and Environmental Effects |
By the end of the
lesson, the learner
should be able to:
Explain soap molecule structure - Describe cleaning mechanism - Investigate hard water effects - Compare soap performance in different waters |
Study hydrophobic and hydrophilic ends
- Demonstrate micelle formation - Test soap in distilled vs hard water - Observe scum formation - Write precipitation equations |
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents |
KLB Secondary Chemistry Form 4, Pages 186-188
|
|
3 | 2 |
ORGANIC CHEMISTRY II
|
Introduction to Polymers and Addition Polymerization
|
By the end of the
lesson, the learner
should be able to:
Define polymers, monomers, and polymerization - Explain addition polymerization - Draw polymer structures - Calculate polymer properties |
Study polymer concept and terminology
- Practice drawing addition polymers from monomers - Examples: polyethene, polypropene, PVC - Calculate molecular masses |
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
|
KLB Secondary Chemistry Form 4, Pages 191-195
|
|
3 | 3 |
ORGANIC CHEMISTRY II
|
Addition Polymers - Types and Properties
Condensation Polymerization and Natural Polymers |
By the end of the
lesson, the learner
should be able to:
Identify different addition polymers - Draw structures from monomers - Name common polymers - Relate structure to properties |
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures - Work through polymer calculation examples - Properties analysis |
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples |
KLB Secondary Chemistry Form 4, Pages 195-197
|
|
3 | 4-5 |
ORGANIC CHEMISTRY II
NITROGEN AND ITS COMPOUNDS |
Polymer Properties and Applications
Comprehensive Problem Solving and Integration Introduction to Nitrogen - Properties and Occurrence Isolation of Nitrogen from Air - Industrial and Laboratory Methods |
By the end of the
lesson, the learner
should be able to:
Compare advantages and disadvantages of synthetic polymers - State uses of different polymers - Discuss environmental concerns - Analyze polymer selection Describe position of nitrogen in the periodic table State electron configuration of nitrogen Identify natural occurrence of nitrogen Explain why nitrogen exists as diatomic molecules |
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability - Disadvantages: non-biodegradability, toxic gases - Application analysis Teacher exposition: Nitrogen as Group V element, atomic number 7, electron arrangement Discussion: 78% of atmosphere is nitrogen. Q/A: Combined nitrogen in compounds - nitrates, proteins. Explanation: N≡N triple bond strength. |
Table 6.10, polymer application samples, environmental impact studies, product examples
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart |
KLB Secondary Chemistry Form 4, Pages 200-201
KLB Secondary Chemistry Form 3, Pages 119 |
|
4 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitrogen Gas
|
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen gas from ammonium compounds Use sodium nitrite and ammonium chloride method Test physical and chemical properties of nitrogen Write equations for nitrogen preparation |
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
|
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
|
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
4 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Properties and Uses of Nitrogen Gas
Nitrogen(I) Oxide - Preparation and Properties |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of nitrogen Explain chemical inertness of nitrogen Describe reactions at high temperatures List industrial uses of nitrogen |
Analysis of test results: Colorless, odorless, does not burn or support combustion. Discussion: Triple bond strength and chemical inertness. High temperature reactions with metals forming nitrides. Uses: Haber process, light bulbs, refrigerant, inert atmosphere.
|
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints |
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
4 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(II) Oxide - Preparation and Properties
Nitrogen(IV) Oxide - Preparation and Properties |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid Observe colorless gas and brown fumes formation Test reactions with air and iron(II) sulfate Explain oxidation in air to NO₂ |
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
|
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials |
KLB Secondary Chemistry Form 3, Pages 125-127
|
|
4 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Comparison of Nitrogen Oxides and Environmental Effects
Laboratory Preparation of Ammonia Preparation of Aqueous Ammonia and Solubility |
By the end of the
lesson, the learner
should be able to:
Compare preparation methods of nitrogen oxides Distinguish between different nitrogen oxides Explain formation in vehicle engines Describe environmental pollution effects Prepare ammonia from ammonium salts and alkalis Set up apparatus with proper gas collection Test characteristic properties of ammonia Explain displacement reaction principle |
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide.
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position. |
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper |
KLB Secondary Chemistry Form 3, Pages 123-131
KLB Secondary Chemistry Form 3, Pages 131-134 |
|
5 |
Midterm exam |
|||||||
6 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Aqueous Ammonia with Metal Ions
Chemical Properties of Ammonia - Reactions with Acids and Combustion |
By the end of the
lesson, the learner
should be able to:
Test reactions of aqueous ammonia with various metal ions Observe precipitate formation and dissolution Explain complex ion formation Use reactions for metal ion identification |
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
|
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection |
KLB Secondary Chemistry Form 3, Pages 136-138
|
|
6 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Ammonia - The Haber Process
Uses of Ammonia and Introduction to Nitrogenous Fertilizers |
By the end of the
lesson, the learner
should be able to:
Describe raw materials and their sources Explain optimum conditions for ammonia synthesis Draw flow diagram of Haber process Explain economic considerations and catalyst use |
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate.
|
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator |
KLB Secondary Chemistry Form 3, Pages 140-141
|
|
6 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogenous Fertilizers - Types and Calculations
|
By the end of the
lesson, the learner
should be able to:
Calculate percentage nitrogen in various fertilizers Compare fertilizer effectiveness Prepare simple nitrogenous fertilizers Discuss environmental considerations |
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion.
|
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
|
KLB Secondary Chemistry Form 3, Pages 141-144
|
|
6 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitric(V) Acid
Industrial Manufacture of Nitric(V) Acid Reactions of Dilute Nitric(V) Acid with Metals Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides |
By the end of the
lesson, the learner
should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid Set up all-glass apparatus safely Explain brown fumes and yellow color Purify nitric acid by air bubbling Test reactions with various metals Explain absence of hydrogen gas production Observe formation of nitrogen oxides Write equations for metal-acid reactions |
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations. |
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes |
KLB Secondary Chemistry Form 3, Pages 144-145
KLB Secondary Chemistry Form 3, Pages 147-150 |
|
7 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
Uses of Nitric(V) Acid and Introduction to Nitrates |
By the end of the
lesson, the learner
should be able to:
Demonstrate strong oxidizing properties Test reactions with FeSO₄, sulfur, and copper Observe formation of nitrogen dioxide Explain electron transfer in oxidation |
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
|
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets |
KLB Secondary Chemistry Form 3, Pages 150-151
|
|
7 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Action of Heat on Nitrates - Decomposition Patterns
|
By the end of the
lesson, the learner
should be able to:
Test thermal decomposition of different nitrates Classify decomposition patterns based on metal reactivity Identify products formed on heating Write equations for decomposition reactions |
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
|
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
|
KLB Secondary Chemistry Form 3, Pages 151-153
|
|
7 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Test for Nitrates - Brown Ring Test
Environmental Pollution by Nitrogen Compounds |
By the end of the
lesson, the learner
should be able to:
Perform brown ring test for nitrates Explain mechanism of complex formation Use alternative copper test method Apply tests to unknown samples |
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples.
|
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations |
KLB Secondary Chemistry Form 3, Pages 153-154
|
|
7 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Pollution Control and Environmental Solutions
Comprehensive Problem Solving - Nitrogen Chemistry Laboratory Practical Assessment - Nitrogen Compounds Industrial Applications and Economic Importance Chapter Review and Integration |
By the end of the
lesson, the learner
should be able to:
Analyze methods to reduce nitrogen pollution Design pollution control strategies Evaluate effectiveness of current measures Propose new solutions for environmental protection Demonstrate practical skills in nitrogen chemistry Perform qualitative analysis of nitrogen compounds Apply safety procedures correctly Interpret experimental observations accurately |
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions. |
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets |
KLB Secondary Chemistry Form 3, Pages 154-157
KLB Secondary Chemistry Form 3, Pages 119-157 |
|
8 |
Endterm exam and Closure |
Your Name Comes Here