Home






SCHEME OF WORK
Chemistry
Form 3 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
ORGANIC CHEMISTRY II
Mode of Action of Soap and Hard Water Effects
Soapless Detergents and Environmental Effects
By the end of the lesson, the learner should be able to:
Explain soap molecule structure
- Describe cleaning mechanism
- Investigate hard water effects
- Compare soap performance in different waters
Study hydrophobic and hydrophilic ends
- Demonstrate micelle formation
- Test soap in distilled vs hard water
- Observe scum formation
- Write precipitation equations
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents
KLB Secondary Chemistry Form 4, Pages 186-188
2 2
ORGANIC CHEMISTRY II
Introduction to Polymers and Addition Polymerization
By the end of the lesson, the learner should be able to:
Define polymers, monomers, and polymerization
- Explain addition polymerization
- Draw polymer structures
- Calculate polymer properties
Study polymer concept and terminology
- Practice drawing addition polymers from monomers
- Examples: polyethene, polypropene, PVC
- Calculate molecular masses
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
KLB Secondary Chemistry Form 4, Pages 191-195
2 3
ORGANIC CHEMISTRY II
Addition Polymers - Types and Properties
Condensation Polymerization and Natural Polymers
By the end of the lesson, the learner should be able to:
Identify different addition polymers
- Draw structures from monomers
- Name common polymers
- Relate structure to properties
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures
- Work through polymer calculation examples
- Properties analysis
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples
KLB Secondary Chemistry Form 4, Pages 195-197
2 4-5
ORGANIC CHEMISTRY II
ORGANIC CHEMISTRY II
NITROGEN AND ITS COMPOUNDS
Polymer Properties and Applications
Comprehensive Problem Solving and Integration
Introduction to Nitrogen - Properties and Occurrence
By the end of the lesson, the learner should be able to:
Compare advantages and disadvantages of synthetic polymers
- State uses of different polymers
- Discuss environmental concerns
- Analyze polymer selection
Solve complex problems involving alkanols and acids
- Apply knowledge to practical situations
- Integrate polymer concepts
- Practice examination questions
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability
- Disadvantages: non-biodegradability, toxic gases
- Application analysis
Worked examples on organic synthesis
- Problem-solving on isomers, reactions, polymers
- Integration of all unit concepts
- Practice examination-style questions
Table 6.10, polymer application samples, environmental impact studies, product examples
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts
Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond
KLB Secondary Chemistry Form 4, Pages 200-201
KLB Secondary Chemistry Form 4, Pages 167-201
3 1
NITROGEN AND ITS COMPOUNDS
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
By the end of the lesson, the learner should be able to:
Describe isolation of nitrogen from air
Explain fractional distillation of liquid air
Set up apparatus for laboratory isolation
Identify impurities removed during isolation
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
KLB Secondary Chemistry Form 3, Pages 119-121
3 2
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitrogen Gas
Properties and Uses of Nitrogen Gas
By the end of the lesson, the learner should be able to:
Prepare nitrogen gas from ammonium compounds
Use sodium nitrite and ammonium chloride method
Test physical and chemical properties of nitrogen
Write equations for nitrogen preparation
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
Property summary charts, Uses of nitrogen displays, Industrial application diagrams
KLB Secondary Chemistry Form 3, Pages 121-123
3 3
NITROGEN AND ITS COMPOUNDS
Nitrogen(I) Oxide - Preparation and Properties
By the end of the lesson, the learner should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate
Test physical and chemical properties
Explain decomposition and oxidizing properties
Describe uses of nitrogen(I) oxide
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
KLB Secondary Chemistry Form 3, Pages 123-125
3 4-5
NITROGEN AND ITS COMPOUNDS
Nitrogen(II) Oxide - Preparation and Properties
Nitrogen(IV) Oxide - Preparation and Properties
Comparison of Nitrogen Oxides and Environmental Effects
By the end of the lesson, the learner should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid
Observe colorless gas and brown fumes formation
Test reactions with air and iron(II) sulfate
Explain oxidation in air to NO₂
Compare preparation methods of nitrogen oxides
Distinguish between different nitrogen oxides
Explain formation in vehicle engines
Describe environmental pollution effects
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide.
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials
Comparison charts, Environmental impact diagrams, Vehicle emission illustrations
KLB Secondary Chemistry Form 3, Pages 125-127
KLB Secondary Chemistry Form 3, Pages 123-131
4 1
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Ammonia
Preparation of Aqueous Ammonia and Solubility
By the end of the lesson, the learner should be able to:
Prepare ammonia from ammonium salts and alkalis
Set up apparatus with proper gas collection
Test characteristic properties of ammonia
Explain displacement reaction principle
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper
KLB Secondary Chemistry Form 3, Pages 131-134
4 2
NITROGEN AND ITS COMPOUNDS
Reactions of Aqueous Ammonia with Metal Ions
By the end of the lesson, the learner should be able to:
Test reactions of aqueous ammonia with various metal ions
Observe precipitate formation and dissolution
Explain complex ion formation
Use reactions for metal ion identification
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
KLB Secondary Chemistry Form 3, Pages 136-138
4 3
NITROGEN AND ITS COMPOUNDS
Chemical Properties of Ammonia - Reactions with Acids and Combustion
By the end of the lesson, the learner should be able to:
Test neutralization reactions with acids
Investigate combustion of ammonia
Examine catalytic oxidation with platinum
Study reducing properties with metal oxides
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
KLB Secondary Chemistry Form 3, Pages 138-140
4 4-5
NITROGEN AND ITS COMPOUNDS
Industrial Manufacture of Ammonia - The Haber Process
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations
By the end of the lesson, the learner should be able to:
Describe raw materials and their sources
Explain optimum conditions for ammonia synthesis
Draw flow diagram of Haber process
Explain economic considerations and catalyst use
Calculate percentage nitrogen in various fertilizers
Compare fertilizer effectiveness
Prepare simple nitrogenous fertilizers
Discuss environmental considerations
Teacher exposition: N₂ from air, H₂ from natural gas/cracking. Process conditions: 500°C, 200 atm, iron catalyst. Flow diagram study: Purification, compression, catalytic chamber, separation, recycling. Economic factors: Compromise between yield and rate.
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion.
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data
KLB Secondary Chemistry Form 3, Pages 140-141
KLB Secondary Chemistry Form 3, Pages 141-144
5 1
NITROGEN AND ITS COMPOUNDS
Laboratory Preparation of Nitric(V) Acid
Industrial Manufacture of Nitric(V) Acid
By the end of the lesson, the learner should be able to:
Prepare nitric acid from nitrate and concentrated sulfuric acid
Set up all-glass apparatus safely
Explain brown fumes and yellow color
Purify nitric acid by air bubbling
Experiment: Heat mixture of KNO₃ and concentrated H₂SO₄ in all-glass apparatus. Collect yellow nitric acid. Explain brown fumes (NO₂) and yellow color. Bubble air through to remove dissolved NO₂. Safety: Gentle heating, fume cupboard.
Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
KLB Secondary Chemistry Form 3, Pages 144-145
5 2
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Metals
By the end of the lesson, the learner should be able to:
Test reactions with various metals
Explain absence of hydrogen gas production
Observe formation of nitrogen oxides
Write equations for metal-acid reactions
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations.
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
KLB Secondary Chemistry Form 3, Pages 147-150
5 3
NITROGEN AND ITS COMPOUNDS
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
By the end of the lesson, the learner should be able to:
Test reactions with carbonates and hydrogen carbonates
Test neutralization with metal hydroxides and oxides
Identify products formed
Write balanced chemical equations
Experiments: (a) Add dilute HNO₃ to Na₂CO₃, CaCO₃, ZnCO₃, CuCO₃, NaHCO₃. Test gas evolved with lime water. (b) Neutralize NaOH, CaO, CuO, PbO with dilute HNO₃. Record color changes and write equations.
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
KLB Secondary Chemistry Form 3, Pages 147-150
5 4-5
NITROGEN AND ITS COMPOUNDS
Uses of Nitric(V) Acid and Introduction to Nitrates
Action of Heat on Nitrates - Decomposition Patterns
Test for Nitrates - Brown Ring Test
By the end of the lesson, the learner should be able to:
List major industrial uses of nitric acid
Explain importance in fertilizer manufacture
Describe use in explosives and dyes
Introduce nitrate salts and their preparation
Test thermal decomposition of different nitrates
Classify decomposition patterns based on metal reactivity
Identify products formed on heating
Write equations for decomposition reactions
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
Experiment: Heat KNO₃, NaNO₃, Zn(NO₃)₂, Cu(NO₃)₂, NH₄NO₃ separately. Test gases with glowing splint. Observe residues. Classification: Group I nitrates → nitrite + O₂; Group II → oxide + NO₂ + O₂; NH₄NO₃ → N₂O + H₂O.
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets
Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples
KLB Secondary Chemistry Form 3, Pages 151
KLB Secondary Chemistry Form 3, Pages 151-153
6 1
NITROGEN AND ITS COMPOUNDS
Environmental Pollution by Nitrogen Compounds
By the end of the lesson, the learner should be able to:
Explain sources of nitrogen pollution
Describe formation of acid rain
Discuss effects on environment and health
Evaluate pollution control measures
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
KLB Secondary Chemistry Form 3, Pages 154-157
6 2
NITROGEN AND ITS COMPOUNDS
Pollution Control and Environmental Solutions
Comprehensive Problem Solving - Nitrogen Chemistry
By the end of the lesson, the learner should be able to:
Analyze methods to reduce nitrogen pollution
Design pollution control strategies
Evaluate effectiveness of current measures
Propose new solutions for environmental protection
Discussion and analysis: Catalytic converters in vehicles, sewage treatment, lime addition to soils/lakes, proper fertilizer application, industrial gas recycling. Group activity: Design pollution control strategy for local area. Evaluation of current measures.
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
KLB Secondary Chemistry Form 3, Pages 154-157
6 3
NITROGEN AND ITS COMPOUNDS
Laboratory Practical Assessment - Nitrogen Compounds
By the end of the lesson, the learner should be able to:
Demonstrate practical skills in nitrogen chemistry
Perform qualitative analysis of nitrogen compounds
Apply safety procedures correctly
Interpret experimental observations accurately
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
KLB Secondary Chemistry Form 3, Pages 119-157
6 4-5
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS
Industrial Applications and Economic Importance
Chapter Review and Integration
Extraction of Sulphur
Allotropes of Sulphur
By the end of the lesson, the learner should be able to:
Evaluate economic importance of nitrogen industry
Analyze industrial production costs and benefits
Compare different manufacturing processes
Assess impact on agricultural productivity
Define sulphur and state its position in the periodic table. Describe the occurrence of sulphur in nature. Explain the Frasch process for extraction of sulphur. Evaluate the effectiveness of the Frasch process.
Case study analysis: Haber process economics, fertilizer industry impact, nitric acid production costs. Agricultural benefits: Crop yield improvements, food security. Economic calculations: Production costs, profit margins, environmental costs. Global nitrogen cycle importance.
Q/A: Review group VI elements and electron configuration of sulphur. Teacher demonstration: Using diagrams to explain the Frasch process setup. Discussion: Why ordinary mining is impossible for sulphur deposits. Group work: Students draw and label the Frasch process diagram.
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum)
Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers
KLB Secondary Chemistry Form 3, Pages 119-157
KLB Secondary Chemistry Form 4, Pages 160-161
7-8

Exams


Your Name Comes Here


Download

Feedback