If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
ORGANIC CHEMISTRY II
|
Mode of Action of Soap and Hard Water Effects
Soapless Detergents and Environmental Effects |
By the end of the
lesson, the learner
should be able to:
Explain soap molecule structure - Describe cleaning mechanism - Investigate hard water effects - Compare soap performance in different waters |
Study hydrophobic and hydrophilic ends
- Demonstrate micelle formation - Test soap in distilled vs hard water - Observe scum formation - Write precipitation equations |
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents |
KLB Secondary Chemistry Form 4, Pages 186-188
|
|
2 | 2 |
ORGANIC CHEMISTRY II
|
Introduction to Polymers and Addition Polymerization
|
By the end of the
lesson, the learner
should be able to:
Define polymers, monomers, and polymerization - Explain addition polymerization - Draw polymer structures - Calculate polymer properties |
Study polymer concept and terminology
- Practice drawing addition polymers from monomers - Examples: polyethene, polypropene, PVC - Calculate molecular masses |
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
|
KLB Secondary Chemistry Form 4, Pages 191-195
|
|
2 | 3 |
ORGANIC CHEMISTRY II
|
Addition Polymers - Types and Properties
Condensation Polymerization and Natural Polymers |
By the end of the
lesson, the learner
should be able to:
Identify different addition polymers - Draw structures from monomers - Name common polymers - Relate structure to properties |
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures - Work through polymer calculation examples - Properties analysis |
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples |
KLB Secondary Chemistry Form 4, Pages 195-197
|
|
2 | 4-5 |
ORGANIC CHEMISTRY II
ORGANIC CHEMISTRY II NITROGEN AND ITS COMPOUNDS |
Polymer Properties and Applications
Comprehensive Problem Solving and Integration Introduction to Nitrogen - Properties and Occurrence |
By the end of the
lesson, the learner
should be able to:
Compare advantages and disadvantages of synthetic polymers - State uses of different polymers - Discuss environmental concerns - Analyze polymer selection Solve complex problems involving alkanols and acids - Apply knowledge to practical situations - Integrate polymer concepts - Practice examination questions |
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability - Disadvantages: non-biodegradability, toxic gases - Application analysis Worked examples on organic synthesis - Problem-solving on isomers, reactions, polymers - Integration of all unit concepts - Practice examination-style questions |
Table 6.10, polymer application samples, environmental impact studies, product examples
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts Periodic table charts, Atmospheric composition diagrams, Molecular models showing N≡N triple bond |
KLB Secondary Chemistry Form 4, Pages 200-201
KLB Secondary Chemistry Form 4, Pages 167-201 |
|
3 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Isolation of Nitrogen from Air - Industrial and Laboratory Methods
|
By the end of the
lesson, the learner
should be able to:
Describe isolation of nitrogen from air Explain fractional distillation of liquid air Set up apparatus for laboratory isolation Identify impurities removed during isolation |
Experiment: Laboratory isolation using aspirator. Pass air through KOH solution to remove CO₂, then over heated copper to remove oxygen. Teacher demonstration: Fractional distillation principles. Flow chart study: Industrial nitrogen production steps.
|
Aspirator, KOH solution, Copper turnings, Heating apparatus, Fractional distillation flow chart
|
KLB Secondary Chemistry Form 3, Pages 119-121
|
|
3 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Nitrogen Gas
Properties and Uses of Nitrogen Gas |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen gas from ammonium compounds Use sodium nitrite and ammonium chloride method Test physical and chemical properties of nitrogen Write equations for nitrogen preparation |
Experiment: Mix sodium nitrite (7g) and ammonium chloride ( 5g) with water. Heat gently and collect gas over water. Tests: Color, smell, burning splint, litmus paper, lime water, burning Mg and S. Safety precautions during heating.
|
Sodium nitrite, Ammonium chloride, Round-bottomed flask, Gas collection apparatus, Test reagents, Deflagrating spoon
Property summary charts, Uses of nitrogen displays, Industrial application diagrams |
KLB Secondary Chemistry Form 3, Pages 121-123
|
|
3 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(I) Oxide - Preparation and Properties
|
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(I) oxide from ammonium nitrate Test physical and chemical properties Explain decomposition and oxidizing properties Describe uses of nitrogen(I) oxide |
Experiment: Heat ammonium nitrate carefully in test tube. Collect gas over warm water. Tests: Color, smell, glowing splint test, reaction with heated copper and sulfur. Safety: Stop heating while some solid remains to avoid explosion.
|
Ammonium nitrate, Test tubes, Gas collection apparatus, Copper turnings, Sulfur, Glowing splints
|
KLB Secondary Chemistry Form 3, Pages 123-125
|
|
3 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Nitrogen(II) Oxide - Preparation and Properties
Nitrogen(IV) Oxide - Preparation and Properties Comparison of Nitrogen Oxides and Environmental Effects |
By the end of the
lesson, the learner
should be able to:
Prepare nitrogen(II) oxide from copper and dilute nitric acid Observe colorless gas and brown fumes formation Test reactions with air and iron(II) sulfate Explain oxidation in air to NO₂ Compare preparation methods of nitrogen oxides Distinguish between different nitrogen oxides Explain formation in vehicle engines Describe environmental pollution effects |
Experiment: Add dilute HNO₃ to copper turnings. Observe brown fumes formation then disappearance. Tests: Effect on litmus, burning splint, FeSO₄ complex formation. Discussion: NO oxidation to NO₂ in air.
Comparative study: Properties table of N₂O, NO, NO₂. Discussion: Formation in internal combustion engines. Environmental effects: Acid rain formation, smog, health problems. Worked examples: Distinguishing tests for each oxide. |
Copper turnings, Dilute nitric acid, Gas collection apparatus, Iron(II) sulfate solution, Test reagents
Copper turnings, Concentrated nitric acid, Lead(II) nitrate, Gas collection apparatus, U-tube with ice, Testing materials Comparison charts, Environmental impact diagrams, Vehicle emission illustrations |
KLB Secondary Chemistry Form 3, Pages 125-127
KLB Secondary Chemistry Form 3, Pages 123-131 |
|
4 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Preparation of Ammonia
Preparation of Aqueous Ammonia and Solubility |
By the end of the
lesson, the learner
should be able to:
Prepare ammonia from ammonium salts and alkalis Set up apparatus with proper gas collection Test characteristic properties of ammonia Explain displacement reaction principle |
Experiment: Heat mixture of calcium hydroxide and ammonium chloride. Collect gas by upward delivery using calcium oxide as drying agent. Tests: Color, smell, combustion, HCl fumes test, litmus paper. Safety: Slanted flask position.
|
Calcium hydroxide, Ammonium chloride, Round-bottomed flask, Calcium oxide, HCl solution, Glass rod, Litmus paper
Ammonia generation apparatus, Funnel, Universal indicator, Fountain apparatus, pH meter/paper |
KLB Secondary Chemistry Form 3, Pages 131-134
|
|
4 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Aqueous Ammonia with Metal Ions
|
By the end of the
lesson, the learner
should be able to:
Test reactions of aqueous ammonia with various metal ions Observe precipitate formation and dissolution Explain complex ion formation Use reactions for metal ion identification |
Experiment: Add aqueous ammonia dropwise to solutions of Ca²⁺, Mg²⁺, Al³⁺, Zn²⁺, Fe²⁺, Fe³⁺, Pb²⁺, Cu²⁺. Record observations with few drops vs excess ammonia. Identify complex ion formation with Zn²⁺ and Cu²⁺.
|
Various metal salt solutions, Aqueous ammonia, Test tubes, Droppers, Observation recording tables
|
KLB Secondary Chemistry Form 3, Pages 136-138
|
|
4 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Chemical Properties of Ammonia - Reactions with Acids and Combustion
Industrial Manufacture of Ammonia - The Haber Process |
By the end of the
lesson, the learner
should be able to:
Test neutralization reactions with acids Investigate combustion of ammonia Examine catalytic oxidation with platinum Study reducing properties with metal oxides |
Experiments: (a) Neutralize H₂SO₄, HCl, HNO₃ with aqueous ammonia using indicators. (b) Attempt combustion in air and oxygen. (c) Catalytic oxidation with heated platinum wire. (d) Reduction of CuO by ammonia. Record all observations.
|
Various dilute acids, Methyl orange, Oxygen supply, Platinum wire, Copper(II) oxide, Combustion apparatus, U-tube for collection
Haber process flow charts, Industrial diagrams, Catalyst samples, Economic analysis sheets |
KLB Secondary Chemistry Form 3, Pages 138-140
|
|
4 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Ammonia and Introduction to Nitrogenous Fertilizers
Nitrogenous Fertilizers - Types and Calculations Laboratory Preparation of Nitric(V) Acid |
By the end of the
lesson, the learner
should be able to:
List major uses of ammonia Explain importance as fertilizer Calculate nitrogen percentages in fertilizers Compare different nitrogenous fertilizers Calculate percentage nitrogen in various fertilizers Compare fertilizer effectiveness Prepare simple nitrogenous fertilizers Discuss environmental considerations |
Discussion: Uses - fertilizer, refrigerant, cleaning agent, hydrazine production. Introduction to fertilizers: Ammonium sulfate, ammonium nitrate, ammonium phosphate, urea, CAN. Calculations: Percentage nitrogen content in each fertilizer type.
Worked examples: Calculate % N in (NH₄)₂SO₄, NH₄NO₃, (NH₄)₃PO₄, CO(NH₂)₂, CAN. Comparison: Urea has highest nitrogen content. Practical: Prepare ammonium sulfate from ammonia and sulfuric acid. Environmental impact discussion. |
Fertilizer samples, Percentage calculation worksheets, Use application charts, Calculator
Various fertilizer formulas, Scientific calculators, Laboratory preparation materials, Environmental impact data Potassium nitrate, Concentrated sulfuric acid, All-glass apparatus, Condenser, Retort stand, Safety equipment |
KLB Secondary Chemistry Form 3, Pages 141-144
|
|
5 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Industrial Manufacture of Nitric(V) Acid
|
By the end of the
lesson, the learner
should be able to:
Describe catalytic oxidation process Explain raw materials and conditions Draw flow diagram of industrial process Calculate theoretical yields and efficiency |
Teacher exposition: Ostwald process - NH₃ oxidation with Pt-Rh catalyst at 900°C. Flow diagram: Oxidation chamber, cooling, absorption tower. Equations: NH₃ → NO → NO₂ → HNO₃. Economic factors: Catalyst cost, heat recovery.
|
Industrial process flow charts, Catalyst samples, Process condition charts, Efficiency calculation sheets
|
KLB Secondary Chemistry Form 3, Pages 145-147
|
|
5 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Dilute Nitric(V) Acid with Metals
Reactions of Dilute Nitric(V) Acid with Carbonates and Hydroxides |
By the end of the
lesson, the learner
should be able to:
Test reactions with various metals Explain absence of hydrogen gas production Observe formation of nitrogen oxides Write equations for metal-acid reactions |
Experiment: Add dilute HNO₃ to Mg, Zn, Cu. Test gases produced with burning splint. Observe that no H₂ is produced (except with Mg in very dilute acid). Explain oxidation of any H₂ formed to water. Record observations and write equations.
|
Various metals (Mg, Zn, Cu), Dilute nitric acid, Test tubes, Gas testing apparatus, Burning splints
Various carbonates and hydroxides, Dilute nitric acid, Lime water, Universal indicator, Test tubes |
KLB Secondary Chemistry Form 3, Pages 147-150
|
|
5 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Reactions of Concentrated Nitric(V) Acid - Oxidizing Properties
|
By the end of the
lesson, the learner
should be able to:
Demonstrate strong oxidizing properties Test reactions with FeSO₄, sulfur, and copper Observe formation of nitrogen dioxide Explain electron transfer in oxidation |
Experiments: (a) Add concentrated HNO₃ to acidified FeSO₄ - observe color change. (b) Add to sulfur - observe reaction. (c) Add to copper turnings - observe vigorous reaction and brown fumes. Explain oxidizing power and reduction to NO₂.
|
Concentrated nitric acid, Iron(II) sulfate, Sulfur powder, Copper turnings, Test tubes, Fume cupboard access
|
KLB Secondary Chemistry Form 3, Pages 150-151
|
|
5 | 4-5 |
NITROGEN AND ITS COMPOUNDS
|
Uses of Nitric(V) Acid and Introduction to Nitrates
Action of Heat on Nitrates - Decomposition Patterns Test for Nitrates - Brown Ring Test |
By the end of the
lesson, the learner
should be able to:
List major industrial uses of nitric acid Explain importance in fertilizer manufacture Describe use in explosives and dyes Introduce nitrate salts and their preparation Perform brown ring test for nitrates Explain mechanism of complex formation Use alternative copper test method Apply tests to unknown samples |
Discussion: Uses - fertilizer production (NH₄NO₃), explosives (TNT), dyes, drugs, metal purification, etching. Introduction to nitrates as salts of nitric acid. Methods of preparation: acid + base, acid + carbonate, acid + metal. Examples of common nitrates.
Experiments: (a) Brown ring test - add FeSO₄ solution to nitrate, then carefully add concentrated H₂SO₄. Observe brown ring formation. (b) Alternative test - warm nitrate with H₂SO₄ and copper turnings. Observe brown fumes. Test unknown samples. |
Industrial use charts, Nitrate salt samples, Preparation method diagrams, Safety data sheets
Various nitrate salts, Test tubes, Bunsen burner, Gas collection apparatus, Glowing splints, Observation recording sheets Sodium nitrate, Fresh FeSO₄ solution, Concentrated H₂SO₄, Copper turnings, Test tubes, Unknown nitrate samples |
KLB Secondary Chemistry Form 3, Pages 151
KLB Secondary Chemistry Form 3, Pages 153-154 |
|
6 | 1 |
NITROGEN AND ITS COMPOUNDS
|
Environmental Pollution by Nitrogen Compounds
Pollution Control and Environmental Solutions |
By the end of the
lesson, the learner
should be able to:
Explain sources of nitrogen pollution Describe formation of acid rain Discuss effects on environment and health Evaluate pollution control measures |
Teacher exposition: NOₓ from vehicles, HNO₃ formation in atmosphere, acid rain effects. Discussion: Chlorosis in plants, building corrosion, soil leaching, smog formation, health effects. Control measures: Catalytic converters, emission controls, proper fertilizer use.
|
Environmental pollution charts, Acid rain effect photos, Vehicle emission diagrams, Control measure illustrations
Case studies, Pollution control technology information, Group activity worksheets, Local environmental data |
KLB Secondary Chemistry Form 3, Pages 154-157
|
|
6 | 2 |
NITROGEN AND ITS COMPOUNDS
|
Comprehensive Problem Solving - Nitrogen Chemistry
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems involving nitrogen compounds Apply knowledge to industrial processes Calculate yields and percentages in reactions Analyze experimental data and results |
Problem-solving session: Mixed calculations involving nitrogen preparation, ammonia synthesis, nitric acid concentration, fertilizer analysis. Industrial application problems. Data analysis from experiments. Integration of all nitrogen chemistry concepts.
|
Scientific calculators, Comprehensive problem sets, Industrial data sheets, Experimental result tables
|
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
6 | 3 |
NITROGEN AND ITS COMPOUNDS
|
Laboratory Practical Assessment - Nitrogen Compounds
Industrial Applications and Economic Importance |
By the end of the
lesson, the learner
should be able to:
Demonstrate practical skills in nitrogen chemistry Perform qualitative analysis of nitrogen compounds Apply safety procedures correctly Interpret experimental observations accurately |
Practical examination: Identify unknown nitrogen compounds using chemical tests. Prepare specified nitrogen compounds. Demonstrate proper laboratory techniques. Safety assessment. Written report on observations and conclusions.
|
Unknown nitrogen compounds, All laboratory chemicals and apparatus used in chapter, Safety equipment, Assessment rubrics
Economic data sheets, Industry case studies, Agricultural statistics, Cost-benefit analysis templates |
KLB Secondary Chemistry Form 3, Pages 119-157
|
|
6 | 4-5 |
NITROGEN AND ITS COMPOUNDS
SULPHUR AND ITS COMPOUNDS |
Chapter Review and Integration
Extraction of Sulphur Allotropes of Sulphur Physical Properties of Sulphur - Solubility |
By the end of the
lesson, the learner
should be able to:
Synthesize all nitrogen chemistry concepts Compare preparation methods for nitrogen compounds Relate structure to properties and reactivity Connect laboratory and industrial processes Define allotropy and allotropes. Prepare rhombic sulphur in the laboratory. Prepare monoclinic sulphur in the laboratory. Compare the properties of rhombic and monoclinic sulphur. |
Comprehensive review: Concept mapping of all nitrogen compounds and their relationships. Comparison tables: Preparation methods, properties, uses. Flow chart: Nitrogen cycle in industry and environment. Integration exercises connecting all topics.
Practical work: Experiment 1(a) - Preparation of rhombic sulphur using carbon(IV) sulphide. Practical work: Experiment 1(b) - Preparation of monoclinic sulphur by heating and cooling. Observation: Using hand lens to examine crystal shapes. Discussion: Compare crystal structures and transition temperature. |
Concept mapping materials, Comparison charts, Flow diagram templates, Integration worksheets
Charts showing periodic table, Diagram of Frasch process, Samples of sulphur compounds (pyrites, gypsum) Powdered sulphur, Carbon(IV) sulphide, Evaporating dish, Glass rod, Hand lens, Boiling tubes, Filter paper, Beakers Powdered sulphur, Water, Benzene, Methylbenzene, Carbon(IV) sulphide, Test tubes, Charts showing molecular structure |
KLB Secondary Chemistry Form 3, Pages 119-157
KLB Secondary Chemistry Form 4, Pages 161-163 |
|
7 |
Exams |
Your Name Comes Here