If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
REPORTING AND REVISION OF PREVIOUS EXAMS |
|||||||
2 | 1-2 |
THE MOLE
|
Back Titration Method
Redox Titrations - Principles Redox Titrations - KMnO₄ Standardization Water of Crystallization Determination |
By the end of the
lesson, the learner
should be able to:
Understand principle of back titration Apply back titration to determine composition Calculate concentrations using back titration data Determine atomic masses from back titration Standardize KMnO₄ solution using iron(II) salt Calculate molarity from redox titration data Apply 1:5 mole ratio in calculations Prepare solutions for redox titrations |
Experiment: Determine atomic mass of divalent metal in MCO₃. Add excess HCl to carbonate, then titrate excess with NaOH. Calculate moles of acid that reacted with carbonate. Determine metal's atomic mass.
Experiment: Standardize KMnO₄ using FeSO₄(NH₄)₂SO₄·6H₂O. Dissolve iron salt in boiled, cooled water. Titrate with KMnO₄ until persistent pink color. Calculate molarity using 5:1 mole ratio. |
Metal carbonate sample, 0.5M HCl, 0M NaOH, Phenolphthalein, Conical flasks
Potassium manganate(VII), Potassium dichromate(VI), Iron(II) solutions, Color change charts Iron(II) ammonium sulfate, KMnO₄ solution, Dilute H₂SO₄, Pipettes, Burettes Hydrated iron(II) salt, Standardized KMnO₄, Dilute H₂SO₄, Analytical balance |
KLB Secondary Chemistry Form 3, Pages 67-70
KLB Secondary Chemistry Form 3, Pages 70-72 |
|
2 | 3 |
THE MOLE
|
Atomicity and Molar Gas Volume
Combining Volumes of Gases - Experimental Investigation |
By the end of the
lesson, the learner
should be able to:
Define atomicity of gaseous elements Classify gases as monoatomic, diatomic, or triatomic Determine molar gas volume experimentally Calculate gas densities and molar masses |
Experiment: Measure volumes and masses of different gases (O₂, CO₂, Cl₂). Calculate densities and molar masses. Determine volume occupied by one mole. Compare values at different conditions.
|
Gas syringes (50cm³), Various gases, Analytical balance, Gas supply apparatus
Gas syringes, Dry NH₃ generator, Dry HCl generator, Glass connecting tubes, Clips |
KLB Secondary Chemistry Form 3, Pages 73-75
|
|
2 | 4 |
THE MOLE
|
Gas Laws and Chemical Equations
|
By the end of the
lesson, the learner
should be able to:
Apply Avogadro's law to chemical reactions Use volume ratios to determine chemical equations Calculate product volumes from reactant volumes Solve problems involving gas stoichiometry |
Worked examples: Use Gay-Lussac's law to determine equations. Calculate volumes of products from given reactant volumes. Apply Avogadro's law to find number of molecules. Practice: Complex gas stoichiometry problems.
|
Scientific calculators, Gas law charts, Volume ratio examples
|
KLB Secondary Chemistry Form 3, Pages 77-79
|
|
2 | 5 |
ORGANIC CHEMISTRY I
|
Introduction to Organic Chemistry and Hydrocarbons
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil |
By the end of the
lesson, the learner
should be able to:
Define organic chemistry and hydrocarbons Explain why carbon forms many compounds Classify hydrocarbons into alkanes, alkenes, and alkynes Identify the bonding in carbon compounds |
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
|
Carbon models, Hydrocarbon structure charts, Molecular model kits
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples |
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
3 | 1-2 |
ORGANIC CHEMISTRY I
|
Fractional Distillation of Crude Oil
Cracking of Alkanes - Thermal and Catalytic Methods Alkane Series and Homologous Series Concept Nomenclature of Alkanes - Straight Chain and Branched |
By the end of the
lesson, the learner
should be able to:
Explain fractional distillation process Perform fractional distillation of crude oil Identify different fractions and their uses Relate boiling points to molecular size Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes |
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties. |
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration Alkane series chart, Molecular formula worksheets, Periodic table Structural formula charts, IUPAC naming rules poster, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 87-89
KLB Secondary Chemistry Form 3, Pages 90-92 |
|
3 | 3 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkanes - Structural Isomers
|
By the end of the
lesson, the learner
should be able to:
Define isomerism in alkanes Draw structural isomers of butane and pentane Distinguish between chain and positional isomerism Predict number of isomers for given alkanes |
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
|
Molecular model kits, Isomerism charts, Structural formula worksheets
|
KLB Secondary Chemistry Form 3, Pages 92-94
|
|
3 | 4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Methane
Laboratory Preparation of Ethane |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
|
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials |
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
3 | 5 |
ORGANIC CHEMISTRY I
|
Physical Properties of Alkanes
Chemical Properties of Alkanes - Combustion and Substitution |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkanes Explain trends in melting and boiling points Relate molecular size to physical properties Compare solubility in different solvents |
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
|
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
Molecular models, Halogenation reaction charts, Chemical equation worksheets |
KLB Secondary Chemistry Form 3, Pages 96-97
|
|
4 |
CYCLE ONE EXAMS |
|||||||
5 | 1-2 |
ORGANIC CHEMISTRY I
|
Uses of Alkanes in Industry and Daily Life
Introduction to Alkenes and Functional Groups Nomenclature of Alkenes |
By the end of the
lesson, the learner
should be able to:
List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents. |
Industrial application charts, Product samples, Environmental impact materials
Alkene series charts, Molecular models showing double bonds, Functional group posters IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits |
KLB Secondary Chemistry Form 3, Pages 98-100
KLB Secondary Chemistry Form 3, Pages 101-102 |
|
5 | 3 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
Laboratory Preparation of Ethene |
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
|
Molecular model kits, Isomerism worksheets, Geometric isomer models
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions |
KLB Secondary Chemistry Form 3, Pages 102
|
|
5 | 4 |
ORGANIC CHEMISTRY I
|
Alternative Preparation of Ethene and Physical Properties
Chemical Properties of Alkenes - Addition Reactions |
By the end of the
lesson, the learner
should be able to:
Describe catalytic dehydration using aluminum oxide Compare different preparation methods List physical properties of ethene Explain trends in alkene physical properties |
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
|
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets |
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
5 | 5 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
|
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
|
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
|
KLB Secondary Chemistry Form 3, Pages 107-108
|
|
6 | 1-2 |
ORGANIC CHEMISTRY I
|
Tests for Alkenes and Uses
Introduction to Alkynes and Triple Bond Nomenclature and Isomerism in Alkynes Laboratory Preparation of Ethyne |
By the end of the
lesson, the learner
should be able to:
Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents. |
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions |
KLB Secondary Chemistry Form 3, Pages 108-109
KLB Secondary Chemistry Form 3, Pages 110-111 |
|
6 | 3 |
ORGANIC CHEMISTRY I
|
Physical and Chemical Properties of Alkynes
Addition Reactions of Alkynes and Chemical Tests |
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
|
Physical properties charts, Comparison tables, Combustion equation examples
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison |
KLB Secondary Chemistry Form 3, Pages 112-113
|
|
6 | 4 |
ORGANIC CHEMISTRY I
CHLORINE AND ITS COMPOUNDS |
Uses of Alkynes and Industrial Applications
Introduction and Preparation of Chlorine |
By the end of the
lesson, the learner
should be able to:
List industrial uses of alkynes Explain oxy-acetylene welding applications Describe use in synthetic fiber production Evaluate importance as chemical starting materials |
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
|
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
Manganese(IV) oxide, Concentrated HCl, Gas collection apparatus, Water, Concentrated H2SO4, Blue litmus paper, Gas jars |
KLB Secondary Chemistry Form 3, Pages 115-116
|
|
6 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Physical Properties of Chlorine
Chemical Properties of Chlorine - Reaction with Water Chemical Properties of Chlorine - Reaction with Metals Chemical Properties of Chlorine - Reaction with Non-metals |
By the end of the
lesson, the learner
should be able to:
Investigate the physical properties of chlorine gas. Explain the method of collection used for chlorine. Test the solubility of chlorine in water. State the density and color of chlorine gas. |
Practical work: Experiment 6.2 - Testing chlorine gas preserved from previous experiment. Recording observations in Table 6. Testing: Color, smell (caution - no direct smelling), density, solubility in water. Demonstration: Inverting gas jar in water trough. Discussion: Why collected by downward delivery.
|
Preserved chlorine gas, Water trough, Gas jars, Observation tables, Safety equipment
Chlorine gas, Distilled water, Blue and red litmus papers, Colored flower petals, Gas jars, Boiling tubes Magnesium ribbon, Iron wire, Chlorine gas, Deflagrating spoon, Combustion tube, Anhydrous CaCl2, Gas jars Red phosphorus, Hydrogen gas, Chlorine gas, Deflagrating spoon, Gas jars, Bunsen burner, Safety equipment |
KLB Secondary Chemistry Form 4, Pages 196-197
|
|
7 | 1-2 |
CHLORINE AND ITS COMPOUNDS
|
Oxidising Properties of Chlorine
Reaction of Chlorine with Alkali Solutions Oxidising Properties - Displacement Reactions Test for Chloride Ions Uses of Chlorine and its Compounds |
By the end of the
lesson, the learner
should be able to:
Investigate chlorine as an oxidizing agent. Test reactions with reducing agents. Write ionic equations for redox reactions. Identify color changes in oxidation reactions. Carry out confirmatory tests for chloride ions. Distinguish between different chloride tests. Practice qualitative analysis techniques. Write equations for chloride ion tests. |
Practical work: Experiment 6.6 - Bubbling chlorine through sodium sulphite solution, testing with barium nitrate and lead nitrate. Reactions with hydrogen sulphide and ammonia. Recording observations in Table 6. Color changes and precipitate formation. Writing ionic equations: SO3²⁻ + Cl2 + H2O → SO4²⁻ + 2Cl⁻ + 2H⁺.
Practical work: Experiment 6.9 - Testing sodium chloride with concentrated H2SO4, testing with lead(II) nitrate solution. Recording observations in Table 6. Tests: White fumes with H2SO4 + ammonia test, white precipitate with Pb(NO3)2 that dissolves on warming. Writing equations: NaCl + H2SO4 → NaHSO4 + HCl, Pb²⁺ + 2Cl⁻ → PbCl |
Sodium sulphite solution, Barium nitrate, Lead nitrate, Hydrogen sulphide gas, Aqueous ammonia, Chlorine gas, Test tubes
Sodium hydroxide solutions (dilute cold, concentrated hot), Chlorine gas, Beakers, Bunsen burner, Thermometer Potassium bromide solution, Potassium iodide solution, Chlorine gas, Test tubes, Observation charts Sodium chloride, Concentrated H2SO4, Lead(II) nitrate solution, Aqueous ammonia, Glass rod, Test tubes, Bunsen burner Charts showing industrial uses, Samples of bleaching agents, PVC materials, Photographs of water treatment plants, Industrial application diagrams |
KLB Secondary Chemistry Form 4, Pages 201-202
KLB Secondary Chemistry Form 4, Pages 204-205 |
|
7 | 3 |
CHLORINE AND ITS COMPOUNDS
|
Hydrogen Chloride - Laboratory Preparation
Chemical Properties of Hydrogen Chloride |
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of hydrogen chloride gas. Set up apparatus for HCl preparation. Investigate physical properties of HCl gas. Explain the method of collection used. |
Practical work: Experiment 6.10 - Preparation using rock salt (NaCl) + concentrated H2SO Setup apparatus as in Figure 6.3(b). Testing physical properties and recording in Table 6.6. Tests: Solubility (fountain experiment), reaction with ammonia, effect on litmus. Collection by downward delivery due to density. Writing equation: NaCl + H2SO4 → NaHSO4 + HCl.
|
Rock salt (NaCl), Concentrated H2SO4, Gas collection apparatus, Ammonia solution, Litmus papers, Water trough, Gas jars
Distilled water, Filter funnel, Metals (Zn, Fe, Mg, Cu), NaOH solution, Carbonates, Lead nitrate, Methylbenzene, Indicators |
KLB Secondary Chemistry Form 4, Pages 207-208
|
|
7 | 4 |
CHLORINE AND ITS COMPOUNDS
|
Large-scale Manufacture of Hydrochloric Acid
Uses of Hydrochloric Acid |
By the end of the
lesson, the learner
should be able to:
Describe industrial production of hydrochloric acid. Identify raw materials and conditions used. Explain the controlled combustion process. Draw flow diagrams of the industrial process. |
Study of Figure 6.4 - Large-scale manufacture setup. Discussion: Raw materials (H2 from electrolysis/cracking, Cl2 from electrolysis). Controlled combustion: H2 + Cl2 → 2HCl in jet burner. Dissolving HCl gas in water over glass beads. Safety: Explosive nature of H2/Cl2 mixture, use of excess chlorine. Industrial considerations: 35% concentration, transport in rubber-lined steel tanks.
|
Flow diagrams, Industrial photographs, Glass beads samples, Charts showing electrolysis processes, Safety equipment models
Samples of rusted and cleaned metals, Photographic materials, pH control charts, Industrial application videos, Water treatment diagrams |
KLB Secondary Chemistry Form 4, Pages 211-212
|
|
7 | 5 |
CHLORINE AND ITS COMPOUNDS
|
Environmental Pollution by Chlorine Compounds and Summary
|
By the end of the
lesson, the learner
should be able to:
Explain environmental effects of chlorine compounds. Describe the impact of CFCs on ozone layer. Discuss pollution by chlorine-containing pesticides. Summarize key concepts of chlorine chemistry. |
Discussion: Environmental impacts - chlorine gas forming acid rain, CFCs (life span CCl3F = 75 years, CCl2F2 = 110 years) breaking down ozone layer. DDT as persistent pesticide, PVC as non-biodegradable plastic. NEMA role in environmental protection, Stockholm Convention on DDT. Control measures and alternatives. Revision: Key reactions, properties, uses, and environmental considerations. Summary of halogen chemistry concepts.
|
Environmental pollution charts, Ozone layer diagrams, DDT restriction documents, PVC waste samples, NEMA guidelines, Summary charts of reactions
|
KLB Secondary Chemistry Form 4, Pages 213-215
|
|
8 |
CYCLE TWO EXAMS |
|||||||
9 |
ANALYSIS OF CYCLE TWO AND CLOSING OF SCHOOL |
Your Name Comes Here