If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1-2 |
ORGANIC CHEMISTRY II
|
Introduction to Alkanols and Nomenclature
Isomerism in Alkanols Laboratory Preparation of Ethanol Industrial Preparation and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Define alkanols and identify functional group - Apply nomenclature rules for alkanols - Draw structural formulae of simple alkanols - Compare alkanols with corresponding alkanes Describe fermentation process - Prepare ethanol in laboratory - Write equation for glucose fermentation - Explain role of yeast and conditions needed |
Q/A: Review alkanes, alkenes from Form 3
- Study functional group -OH concept - Practice naming alkanols using IUPAC rules - Complete Table 6.2 - alkanol structures Experiment 6.1: Fermentation of sugar solution with yeast - Set up apparatus for 2-3 days - Observe gas evolution - Test for CO₂ with lime water - Smell final product |
Molecular models, Table 6.1 and 6.2, alkanol structure charts, student books
Isomer structure charts, molecular models, practice worksheets, student books Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer Table 6.3, industrial process diagrams, ethene structure models, property comparison charts |
KLB Secondary Chemistry Form 4, Pages 167-170
KLB Secondary Chemistry Form 4, Pages 171-172 |
|
2 | 3 |
ORGANIC CHEMISTRY II
|
Chemical Properties of Alkanols I
|
By the end of the
lesson, the learner
should be able to:
Test reactions of ethanol with various reagents - Write equations for ethanol reactions - Identify products formed - Explain reaction mechanisms |
Experiment 6.2: Test ethanol with burning, universal indicator, sodium metal, acids
- Record observations in Table 6.4 - Write balanced equations - Discuss reaction types |
Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes
|
KLB Secondary Chemistry Form 4, Pages 173-175
|
|
2 | 4 |
ORGANIC CHEMISTRY II
|
Chemical Properties of Alkanols II
Uses of Alkanols and Health Effects |
By the end of the
lesson, the learner
should be able to:
Investigate oxidation and esterification reactions - Test oxidizing agents on ethanol - Prepare esters from alkanols - Explain dehydration reactions |
Complete Experiment 6.2: Test with acidified K₂Cr₂O₇ and KMnO₄
- Observe color changes - Esterification with ethanoic acid - Study dehydration conditions |
Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus
Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials |
KLB Secondary Chemistry Form 4, Pages 173-176
|
|
2 | 5 |
ORGANIC CHEMISTRY II
|
Introduction to Alkanoic Acids
|
By the end of the
lesson, the learner
should be able to:
Define alkanoic acids and functional group - Apply nomenclature rules - Draw structural formulae - Compare with alkanols |
Study carboxyl group (-COOH) structure
- Practice naming using IUPAC rules - Complete Table 6.5 and 6.6 - Compare functional groups of alkanols and acids |
Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books
|
KLB Secondary Chemistry Form 4, Pages 177-179
|
|
3 | 1-2 |
ORGANIC CHEMISTRY II
|
Laboratory Preparation of Ethanoic Acid
Physical and Chemical Properties of Alkanoic Acids |
By the end of the
lesson, the learner
should be able to:
Prepare ethanoic acid by oxidation - Write equations for preparation - Set up oxidation apparatus - Identify product by testing Investigate chemical reactions of ethanoic acid - Test with various reagents - Write chemical equations - Analyze acid strength |
Experiment 6.3: Oxidize ethanol using acidified KMnO₄
- Set up heating and distillation apparatus - Collect distillate at 118°C - Test product properties Experiment following Table 6.8: Test ethanoic acid with indicators, metals, carbonates, bases - Record observations - Write equations - Discuss weak acid behavior |
Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask
2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes |
KLB Secondary Chemistry Form 4, Pages 179-180
KLB Secondary Chemistry Form 4, Pages 180-182 |
|
3 | 3 |
ORGANIC CHEMISTRY II
|
Esterification and Uses of Alkanoic Acids
|
By the end of the
lesson, the learner
should be able to:
Explain ester formation process - Write esterification equations - State uses of alkanoic acids - Prepare simple esters |
Complete esterification experiments
- Study concentrated H₂SO₄ as catalyst - Write general esterification equation - Discuss applications in food, drugs, synthetic fibres |
Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water
|
KLB Secondary Chemistry Form 4, Pages 182-183
|
|
3 | 4 |
ORGANIC CHEMISTRY II
|
Introduction to Detergents and Soap Preparation
|
By the end of the
lesson, the learner
should be able to:
Define detergents and classify types - Explain saponification process - Prepare soap in laboratory - Compare soapy and soapless detergents |
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH - Add salt for salting out - Test soap formation |
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
|
KLB Secondary Chemistry Form 4, Pages 183-186
|
|
3 | 5 |
ORGANIC CHEMISTRY II
|
Mode of Action of Soap and Hard Water Effects
|
By the end of the
lesson, the learner
should be able to:
Explain soap molecule structure - Describe cleaning mechanism - Investigate hard water effects - Compare soap performance in different waters |
Study hydrophobic and hydrophilic ends
- Demonstrate micelle formation - Test soap in distilled vs hard water - Observe scum formation - Write precipitation equations |
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
|
KLB Secondary Chemistry Form 4, Pages 186-188
|
|
4 | 1-2 |
ORGANIC CHEMISTRY II
|
Soapless Detergents and Environmental Effects
|
By the end of the
lesson, the learner
should be able to:
Explain soapless detergent preparation - Compare advantages/disadvantages - Discuss environmental impact - Analyze pollution effects |
Study alkylbenzene sulphonate preparation
- Compare Table 6.9 - soap vs soapless - Discussion on eutrophication and biodegradability - Environmental awareness |
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents
|
KLB Secondary Chemistry Form 4, Pages 188-191
|
|
4 | 3 |
ORGANIC CHEMISTRY II
|
Introduction to Polymers and Addition Polymerization
|
By the end of the
lesson, the learner
should be able to:
Define polymers, monomers, and polymerization - Explain addition polymerization - Draw polymer structures - Calculate polymer properties |
Study polymer concept and terminology
- Practice drawing addition polymers from monomers - Examples: polyethene, polypropene, PVC - Calculate molecular masses |
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
|
KLB Secondary Chemistry Form 4, Pages 191-195
|
|
4 | 4 |
ORGANIC CHEMISTRY II
|
Addition Polymers - Types and Properties
|
By the end of the
lesson, the learner
should be able to:
Identify different addition polymers - Draw structures from monomers - Name common polymers - Relate structure to properties |
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures - Work through polymer calculation examples - Properties analysis |
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
|
KLB Secondary Chemistry Form 4, Pages 195-197
|
|
4 | 5 |
ORGANIC CHEMISTRY II
|
Condensation Polymerization and Natural Polymers
|
By the end of the
lesson, the learner
should be able to:
Explain condensation polymerization - Compare with addition polymerization - Study natural polymers - Analyze nylon formation |
Study nylon 6,6 formation from diamine and dioic acid
- Natural polymers: starch, protein, rubber - Vulcanization process - Compare synthetic vs natural |
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples
|
KLB Secondary Chemistry Form 4, Pages 197-200
|
|
5 | 1-2 |
ORGANIC CHEMISTRY II
|
Polymer Properties and Applications
|
By the end of the
lesson, the learner
should be able to:
Compare advantages and disadvantages of synthetic polymers - State uses of different polymers - Discuss environmental concerns - Analyze polymer selection |
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability - Disadvantages: non-biodegradability, toxic gases - Application analysis |
Table 6.10, polymer application samples, environmental impact studies, product examples
|
KLB Secondary Chemistry Form 4, Pages 200-201
|
|
5 | 3 |
ORGANIC CHEMISTRY II
|
Comprehensive Problem Solving and Integration
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems involving alkanols and acids - Apply knowledge to practical situations - Integrate polymer concepts - Practice examination questions |
Worked examples on organic synthesis
- Problem-solving on isomers, reactions, polymers - Integration of all unit concepts - Practice examination-style questions |
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts
|
KLB Secondary Chemistry Form 4, Pages 167-201
|
|
5 | 4 |
ORGANIC CHEMISTRY I
|
Introduction to Organic Chemistry and Hydrocarbons
|
By the end of the
lesson, the learner
should be able to:
Define organic chemistry and hydrocarbons Explain why carbon forms many compounds Classify hydrocarbons into alkanes, alkenes, and alkynes Identify the bonding in carbon compounds |
Teacher exposition: Definition of organic chemistry. Discussion: Unique properties of carbon - tetravalency, catenation, multiple bonding. Q/A: Examples of hydrocarbons in daily life. Introduction to three main groups of hydrocarbons.
|
Carbon models, Hydrocarbon structure charts, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
5 | 5 |
ORGANIC CHEMISTRY I
|
Sources of Alkanes - Natural Gas, Biogas, and Crude Oil
|
By the end of the
lesson, the learner
should be able to:
Identify natural sources of alkanes Describe composition of natural gas and biogas Explain crude oil as major source of alkanes Describe biogas digester and its operation |
Discussion: Natural gas composition (80% methane). Explanation: Biogas formation from organic waste decomposition. Teacher demonstration: Biogas digester model/diagram. Q/A: Environmental benefits of biogas production.
|
Biogas digester model/diagram, Natural gas composition charts, Organic waste samples
|
KLB Secondary Chemistry Form 3, Pages 86-87
|
|
6 | 1-2 |
ORGANIC CHEMISTRY I
|
Fractional Distillation of Crude Oil
|
By the end of the
lesson, the learner
should be able to:
Explain fractional distillation process Perform fractional distillation of crude oil Identify different fractions and their uses Relate boiling points to molecular size |
Experiment: Fractional distillation of crude oil using improvised column. Collect fractions at different temperatures (120°C intervals up to 350°C). Test fractions for appearance, flammability, and viscosity. Record observations and relate to molecular size.
|
Crude oil sample, Boiling tubes, High-temperature thermometer, Sand/porcelain chips, Bunsen burner, Test tubes
|
KLB Secondary Chemistry Form 3, Pages 87-89
|
|
6 | 3 |
ORGANIC CHEMISTRY I
|
Cracking of Alkanes - Thermal and Catalytic Methods
|
By the end of the
lesson, the learner
should be able to:
Define cracking of alkanes Distinguish between thermal and catalytic cracking Write equations for cracking reactions Explain industrial importance of cracking |
Teacher exposition: Definition and purpose of cracking. Discussion: Thermal vs catalytic cracking conditions. Worked examples: Cracking equations producing smaller alkanes, alkenes, and hydrogen. Q/A: Industrial applications and hydrogen production.
|
Cracking process diagrams, Chemical equation charts, Catalyst samples for demonstration
|
KLB Secondary Chemistry Form 3, Pages 89-90
|
|
6 | 4 |
ORGANIC CHEMISTRY I
|
Alkane Series and Homologous Series Concept
|
By the end of the
lesson, the learner
should be able to:
Define homologous series using alkanes Write molecular formulas for first 10 alkanes Identify characteristics of homologous series Apply general formula CₙH₂ₙ₊₂ for alkanes |
Teacher exposition: Homologous series definition and characteristics. Table completion: Names, molecular formulas, and structures of first 10 alkanes. Discussion: General formula application. Pattern recognition: Gradual change in physical properties.
|
Alkane series chart, Molecular formula worksheets, Periodic table
|
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
6 | 5 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkanes - Straight Chain and Branched
|
By the end of the
lesson, the learner
should be able to:
Name straight-chain alkanes using IUPAC rules Identify parent chains in branched alkanes Name branched alkanes with substituent groups Apply systematic naming rules correctly |
Teacher demonstration: Step-by-step naming of branched alkanes. Rules application: Longest chain identification, numbering from nearest branch, substituent naming. Practice exercises: Various branched alkane structures. Group work: Name complex branched alkanes.
|
Structural formula charts, IUPAC naming rules poster, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 90-92
|
|
7 |
Exams |
|||||||
8 | 1-2 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkanes - Structural Isomers
|
By the end of the
lesson, the learner
should be able to:
Define isomerism in alkanes Draw structural isomers of butane and pentane Distinguish between chain and positional isomerism Predict number of isomers for given alkanes |
Teacher exposition: Isomerism definition and types. Practical exercise: Draw all isomers of butane and pentane. Discussion: Physical property differences between isomers. Model building: Use molecular models to show isomeric structures.
|
Molecular model kits, Isomerism charts, Structural formula worksheets
|
KLB Secondary Chemistry Form 3, Pages 92-94
|
|
8 | 3 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Methane
|
By the end of the
lesson, the learner
should be able to:
Describe laboratory preparation of methane Perform methane preparation experiment safely Test physical and chemical properties of methane Write equation for methane preparation |
Experiment: Heat mixture of sodium ethanoate and soda lime. Collect methane gas over water. Tests: Color, smell, combustion, reaction with bromine in dark. Record observations in table format. Safety precautions during gas collection.
|
Sodium ethanoate, Soda lime, Round-bottomed flask, Gas collection apparatus, Bromine water, Wooden splints
|
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
8 | 4 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethane
|
By the end of the
lesson, the learner
should be able to:
Prepare ethane using sodium propanoate and soda lime Compare preparation methods of methane and ethane Test properties of ethane gas Write general equation for alkane preparation |
Experiment: Prepare ethane from sodium propanoate and soda lime. Compare with methane preparation method. Carry out similar tests as for methane. Discussion: General pattern for alkane preparation from sodium alkanoates.
|
Sodium propanoate, Soda lime, Gas collection apparatus, Testing materials
|
KLB Secondary Chemistry Form 3, Pages 94-96
|
|
8 | 5 |
ORGANIC CHEMISTRY I
|
Physical Properties of Alkanes
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkanes Explain trends in melting and boiling points Relate molecular size to physical properties Compare solubility in different solvents |
Data analysis: Study table of physical properties of first 10 alkanes. Graph plotting: Boiling points vs number of carbon atoms. Discussion: Intermolecular forces and property trends. Q/A: Solubility patterns in polar and non-polar solvents.
|
Physical properties data tables, Graph paper, Calculators, Solubility demonstration materials
|
KLB Secondary Chemistry Form 3, Pages 96-97
|
|
9 | 1-2 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkanes - Combustion and Substitution
Uses of Alkanes in Industry and Daily Life |
By the end of the
lesson, the learner
should be able to:
Write equations for complete and incomplete combustion Explain substitution reactions with halogens Describe conditions for halogenation reactions Name halogenated alkane products List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Worked examples: Combustion equations for various alkanes. Teacher demonstration: Methane + bromine in sunlight (or simulation). Discussion: Free radical mechanism in substitution. Practice: Write equations for chlorination of methane.
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products. |
Molecular models, Halogenation reaction charts, Chemical equation worksheets
Industrial application charts, Product samples, Environmental impact materials |
KLB Secondary Chemistry Form 3, Pages 97-98
KLB Secondary Chemistry Form 3, Pages 98-100 |
|
9 | 3 |
ORGANIC CHEMISTRY I
|
Uses of Alkanes in Industry and Daily Life
|
By the end of the
lesson, the learner
should be able to:
List major uses of different alkanes Explain industrial applications of alkanes Describe environmental considerations Evaluate economic importance of alkanes |
Discussion: Uses of gaseous alkanes as fuels. Teacher exposition: Industrial applications - carbon black, methanol production, hydrogen source. Q/A: Environmental impact and cleaner fuel initiatives. Assignment: Research local uses of alkane products.
|
Industrial application charts, Product samples, Environmental impact materials
|
KLB Secondary Chemistry Form 3, Pages 98-100
|
|
9 | 4 |
ORGANIC CHEMISTRY I
|
Introduction to Alkenes and Functional Groups
|
By the end of the
lesson, the learner
should be able to:
Define alkenes and unsaturation Identify the C=C functional group Write general formula for alkenes (CₙH₂ₙ) Compare alkenes with alkanes |
Teacher exposition: Alkenes definition and unsaturation concept. Introduction: C=C double bond as functional group. Table study: First 6 members of alkene series. Comparison: Alkenes vs alkanes - formulas and structures.
|
Alkene series charts, Molecular models showing double bonds, Functional group posters
|
KLB Secondary Chemistry Form 3, Pages 100-101
|
|
9 | 5 |
ORGANIC CHEMISTRY I
|
Nomenclature of Alkenes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC rules for naming alkenes Number carbon chains to give lowest numbers to double bonds Name branched alkenes with substituents Distinguish position isomers of alkenes |
Teacher demonstration: Step-by-step naming of alkenes. Rules application: Longest chain with double bond, numbering from end nearest double bond. Practice exercises: Name various alkene structures. Group work: Complex branched alkenes with substituents.
|
IUPAC naming charts for alkenes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 101-102
|
|
10 | 1-2 |
ORGANIC CHEMISTRY I
|
Isomerism in Alkenes - Branching and Positional
Laboratory Preparation of Ethene |
By the end of the
lesson, the learner
should be able to:
Draw structural isomers of alkenes Distinguish between branching and positional isomerism Identify geometric isomers in alkenes Predict isomer numbers for given molecular formulas Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene |
Practical exercise: Draw all isomers of butene and pentene. Teacher exposition: Branching vs positional isomerism in alkenes. Model building: Use molecular models for isomer visualization. Discussion: Geometric isomerism introduction (basic level).
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid. |
Molecular model kits, Isomerism worksheets, Geometric isomer models
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions |
KLB Secondary Chemistry Form 3, Pages 102
KLB Secondary Chemistry Form 3, Pages 102-104 |
|
10 | 3 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethene
|
By the end of the
lesson, the learner
should be able to:
Prepare ethene by dehydration of ethanol Describe role of concentrated sulfuric acid Set up apparatus safely for ethene preparation Test physical and chemical properties of ethene |
Experiment: Dehydration of ethanol using concentrated H₂SO₄ at 170°C. Use sand bath for controlled heating. Pass gas through NaOH to remove impurities. Tests: Bromine water, acidified KMnO₄, combustion. Safety precautions with concentrated acid.
|
Ethanol, Concentrated H₂SO₄, Round-bottomed flask, Sand bath, Gas collection apparatus, Testing solutions
|
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
10 | 4 |
ORGANIC CHEMISTRY I
|
Alternative Preparation of Ethene and Physical Properties
|
By the end of the
lesson, the learner
should be able to:
Describe catalytic dehydration using aluminum oxide Compare different preparation methods List physical properties of ethene Explain trends in alkene physical properties |
Demonstration: Alternative method using Al₂O₃ catalyst. Comparison: Acid vs catalytic dehydration methods. Data analysis: Physical properties of alkenes table. Discussion: Property trends with increasing molecular size.
|
Aluminum oxide catalyst, Glass wool, Alternative apparatus setup, Physical properties charts
|
KLB Secondary Chemistry Form 3, Pages 102-104
|
|
10 | 5 |
ORGANIC CHEMISTRY I
|
Chemical Properties of Alkenes - Addition Reactions
|
By the end of the
lesson, the learner
should be able to:
Explain addition reactions due to C=C double bond Write equations for halogenation of alkenes Describe hydrogenation and hydrohalogenation Explain addition mechanism |
Teacher exposition: Addition reactions definition and mechanism. Worked examples: Ethene + Cl₂, Br₂, HBr, H₂. Discussion: Markovnikov's rule for unsymmetrical addition. Practice: Various addition reaction equations.
|
Addition reaction charts, Mechanism diagrams, Chemical equation worksheets
|
KLB Secondary Chemistry Form 3, Pages 105-107
|
|
11 | 1-2 |
ORGANIC CHEMISTRY I
|
Oxidation Reactions of Alkenes and Polymerization
Tests for Alkenes and Uses |
By the end of the
lesson, the learner
should be able to:
Describe oxidation by KMnO₄ and K₂Cr₂O₇ Explain polymerization of ethene Define monomers and polymers Write equations for polymer formation Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture |
Demonstration: Decolorization of KMnO₄ by alkenes. Teacher exposition: Polymerization process and polymer formation. Examples: Ethene → polyethene formation. Discussion: Industrial importance of polymerization. Practice: Write polymerization equations.
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications. |
Oxidizing agents for demonstration, Polymer samples, Polymerization charts, Monomer-polymer models
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts |
KLB Secondary Chemistry Form 3, Pages 107-108
KLB Secondary Chemistry Form 3, Pages 108-109 |
|
11 | 3 |
ORGANIC CHEMISTRY I
|
Tests for Alkenes and Uses
|
By the end of the
lesson, the learner
should be able to:
Perform chemical tests to identify alkenes Use bromine water and KMnO₄ as test reagents List industrial and domestic uses of alkenes Explain importance in plastic manufacture |
Practical session: Test known alkenes with bromine water and acidified KMnO₄. Observe rapid decolorization compared to alkanes. Discussion: Uses in plastics, ethanol production, fruit ripening, detergents. Assignment: Research alkene applications.
|
Test alkenes, Bromine water, Acidified KMnO₄, Plastic samples, Uses reference charts
|
KLB Secondary Chemistry Form 3, Pages 108-109
|
|
11 | 4 |
ORGANIC CHEMISTRY I
|
Introduction to Alkynes and Triple Bond
|
By the end of the
lesson, the learner
should be able to:
Define alkynes and triple bond structure Write general formula for alkynes (CₙH₂ₙ₋₂) Identify first members of alkyne series Compare degree of unsaturation in hydrocarbons |
Teacher exposition: Alkynes definition and C≡C triple bond. Table study: First 6 members of alkyne series with structures. Discussion: Degrees of unsaturation - alkanes vs alkenes vs alkynes. Model demonstration: Triple bond representation.
|
Alkyne series charts, Triple bond molecular models, Unsaturation comparison charts
|
KLB Secondary Chemistry Form 3, Pages 109-110
|
|
11 | 5 |
ORGANIC CHEMISTRY I
|
Nomenclature and Isomerism in Alkynes
|
By the end of the
lesson, the learner
should be able to:
Apply IUPAC naming rules for alkynes Name branched alkynes with substituents Draw structural isomers of alkynes Identify branching and positional isomerism |
Teacher demonstration: Systematic naming of alkynes using -yne suffix. Practice exercises: Name various alkyne structures. Drawing exercise: Isomers of pentyne and hexyne. Group work: Complex branched alkynes with multiple substituents.
|
IUPAC naming rules for alkynes, Structural formula worksheets, Molecular model kits
|
KLB Secondary Chemistry Form 3, Pages 110-111
|
|
12 | 1-2 |
ORGANIC CHEMISTRY I
|
Laboratory Preparation of Ethyne
Physical and Chemical Properties of Alkynes |
By the end of the
lesson, the learner
should be able to:
Prepare ethyne from calcium carbide and water Set up gas collection apparatus safely Test physical and chemical properties of ethyne Write equation for ethyne preparation Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Experiment: Calcium carbide + water reaction. Use sand layer for heat absorption. Collect ethyne over water. Tests: Color, smell, combustion, bromine water, acidified KMnO₄. Safety: Dry apparatus, controlled water addition.
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond. |
Calcium carbide, Sand, Flat-bottomed flask, Dropping funnel, Gas collection apparatus, Testing solutions
Physical properties charts, Comparison tables, Combustion equation examples |
KLB Secondary Chemistry Form 3, Pages 111-112
KLB Secondary Chemistry Form 3, Pages 112-113 |
|
12 | 3 |
ORGANIC CHEMISTRY I
|
Physical and Chemical Properties of Alkynes
|
By the end of the
lesson, the learner
should be able to:
Describe physical properties of alkynes Compare alkyne properties with alkenes and alkanes Write combustion equations for alkynes Explain addition reactions of alkynes |
Data analysis: Physical properties of alkynes table. Comparison: Alkynes vs alkenes vs alkanes properties. Worked examples: Combustion reactions of ethyne. Teacher exposition: Two-step addition reactions due to triple bond.
|
Physical properties charts, Comparison tables, Combustion equation examples
|
KLB Secondary Chemistry Form 3, Pages 112-113
|
|
12 | 4 |
ORGANIC CHEMISTRY I
|
Addition Reactions of Alkynes and Chemical Tests
|
By the end of the
lesson, the learner
should be able to:
Write equations for halogenation of alkynes Describe hydrogenation and hydrohalogenation Compare reaction rates: alkynes vs alkenes Perform chemical tests for alkynes |
Worked examples: Two-step addition reactions of ethyne with Br₂, Cl₂, H₂. Discussion: Faster reaction rates in alkynes compared to alkenes. Practical session: Test alkynes with oxidizing agents. Comparison: Rate of decolorization vs alkenes.
|
Addition reaction charts, Chemical equation worksheets, Test solutions, Stopwatch for rate comparison
|
KLB Secondary Chemistry Form 3, Pages 113-115
|
|
12 | 5 |
ORGANIC CHEMISTRY I
|
Uses of Alkynes and Industrial Applications
|
By the end of the
lesson, the learner
should be able to:
List industrial uses of alkynes Explain oxy-acetylene welding applications Describe use in synthetic fiber production Evaluate importance as chemical starting materials |
Discussion: Industrial applications of alkynes in adhesives, plastics, synthetic fibers. Teacher demonstration: Oxy-acetylene flame principles (or video). Q/A: Starting materials for chemical synthesis. Assignment: Research local industrial uses.
|
Industrial application charts, Welding equipment demonstration/video, Synthetic fiber samples
|
KLB Secondary Chemistry Form 3, Pages 115-116
|
Your Name Comes Here