If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 |
REPORTING AND REVISION |
|||||||
2 | 1 |
RECEPTION, RESPONSE AND CO-ORDINATION
|
Balance and Posture Control
|
By the end of the
lesson, the learner
should be able to:
Explain how ear maintains balance and posture. Describe role of semicircular canals and vestibule. Understand body balance mechanisms. |
Exposition on balance control mechanisms using diagrams. Discussion on semicircular canals and their orientation. Explanation of otoliths and gravity detection. Simple balance experiments and demonstrations.
|
Textbook, chalkboard, chalk, simple materials for balance demonstration
|
KLB Secondary Biology Form 4, Pages 114-115
|
|
2 | 2 |
RECEPTION, RESPONSE AND CO-ORDINATION
|
Ear Defects and Hearing Problems
|
By the end of the
lesson, the learner
should be able to:
Identify ear defects and hearing problems. Explain causes of deafness and hearing loss. Describe prevention and treatment methods. |
Discussion on types of deafness and their causes. Exposition on ear infections and prevention. Examples of hearing problems from local community. Health education on ear care and protection.
|
Textbook, chalkboard, chalk, local examples of hearing problems
|
KLB Secondary Biology Form 4, Pages 115-116
|
|
2 | 3-4 |
RECEPTION, RESPONSE AND CO-ORDINATION
|
Integration and Coordination Systems Review
Practical Applications and Assessment |
By the end of the
lesson, the learner
should be able to:
Compare plant and animal coordination systems. Integrate nervous, endocrine, and sensory systems. Apply knowledge to solve coordination problems. Apply coordination concepts to real-life situations. Solve problems related to responses and coordination. Demonstrate understanding through practical exercises. |
Comprehensive review of all coordination systems. Comparison charts of different response types. Problem-solving exercises on coordination scenarios. Q&A sessions covering all topics. Preparation for assessments.
Practical problem-solving sessions. Case study analysis of coordination disorders. Application of concepts to agricultural and medical scenarios. Assessment activities and evaluation. |
Textbook, chalkboard, chalk, exercise books, review materials
Textbook, assessment materials, local case studies, exercise books |
KLB Secondary Biology Form 4, Pages 78-116
|
|
2 | 5 |
SUPPORT AND MOVEMENT
|
Importance of Support and Movement; Plant Support Strategies
|
By the end of the
lesson, the learner
should be able to:
Explain the necessity for support in plants and animals. Describe importance of movement in organisms. Identify different support mechanisms in plants. Explain role of turgor pressure and alternative support methods. |
Brainstorming on why organisms need support. Discussion on consequences of lack of support. Observation of local plants showing different support strategies. Practical experiment on wilting in herbaceous vs woody plants. Analysis of climbing plants and their support adaptations.
|
Textbook, chalkboard, chalk, local plant specimens, herbaceous and woody plants for wilting experiment
|
KLB Secondary Biology Form 4, Pages 120-121, 125-126
|
|
3 |
OPENER EXAMS |
|||||||
4 | 1 |
SUPPORT AND MOVEMENT
|
Tissue Arrangement in Monocot and Dicot Stems
|
By the end of the
lesson, the learner
should be able to:
Describe arrangement of tissues in monocotyledonous and dicotyledonous stems. Compare tissue arrangements between monocots and dicots. Identify supporting tissues and their distribution. |
Examination of fresh monocot and dicot stem cross-sections. Drawing and labeling tissue arrangements on chalkboard. Practical observation of vascular bundle patterns. Comparison of scattered vs ring arrangements. Discussion on supporting tissue distribution.
|
Textbook, chalkboard, chalk, fresh monocot stems (maize, sugarcane), fresh dicot stems (bean plants), razor blades, hand lenses
|
KLB Secondary Biology Form 4, Pages 121-125
|
|
4 | 2 |
SUPPORT AND MOVEMENT
|
Supporting Tissues in Plants and Their Functions
|
By the end of the
lesson, the learner
should be able to:
Identify types of supporting tissues: collenchyma, sclerenchyma, xylem vessels, tracheids. Explain functions of each supporting tissue. Describe how these tissues provide mechanical strength. Compare tissue properties and locations. |
Detailed exposition on supporting tissue types using diagrams. Discussion on tissue characteristics and functions. Examination of tissue examples in stem sections. Comparison of tissue properties and mechanical strength. Drawing tissue structures and arrangements.
|
Textbook, chalkboard, chalk, microscope slides (if available), fresh stem sections, exercise books
|
KLB Secondary Biology Form 4, Pages 121-125
|
|
4 | 3-4 |
SUPPORT AND MOVEMENT
|
Types of Animal Skeletons
Fish Locomotion - Structure and Mechanism |
By the end of the
lesson, the learner
should be able to:
Identify three types of animal skeletons: hydrostatic, exoskeleton, endoskeleton. Compare structure, composition, and functions of each skeleton type. Explain advantages and disadvantages of different skeleton types. Examine external features of bony fish related to locomotion. Identify different types of fins and their functions. Explain swimming mechanism and calculate tail power. Describe streamlined body adaptations. |
Exposition on skeleton types using examples. Examination of arthropod specimens showing exoskeleton. Discussion on bone and cartilage as endoskeleton materials. Comparison table of skeleton characteristics. Analysis of evolutionary adaptations and growth limitations.
Practical examination of fresh tilapia or similar fish. Identification and drawing of fins and body features. Discussion on streamlining and scale arrangement. Detailed exposition on swimming mechanism using diagrams. Practical calculation of tail power using fish measurements. |
Textbook, chalkboard, chalk, arthropod specimens (grasshoppers, crabs), bone specimens, comparison charts
Textbook, fresh fish specimen, chalkboard, chalk, forceps, measuring tools, calculator, exercise books |
KLB Secondary Biology Form 4, Pages 126-127
KLB Secondary Biology Form 4, Pages 127-129 |
|
4 | 5 |
SUPPORT AND MOVEMENT
|
Human Axial Skeleton - Skull and Rib Cage
|
By the end of the
lesson, the learner
should be able to:
Describe structure and functions of human skull. Explain structure and function of rib cage. Understand protection and support roles. Identify bone features and adaptations. |
Examination of skull and rib cage specimens or models. Drawing skull and rib cage structures. Discussion on brain and organ protection. Analysis of breathing movements and rib articulation. Identification of skull sutures and rib cage components.
|
Textbook, chalkboard, chalk, skull and rib cage specimens, exercise books
|
KLB Secondary Biology Form 4, Pages 130-131
|
|
5 | 1 |
SUPPORT AND MOVEMENT
|
Vertebral Column - Cervical and Thoracic Vertebrae
|
By the end of the
lesson, the learner
should be able to:
Describe general structure of vertebrae. Identify features of cervical vertebrae including atlas and axis. Explain features and adaptations of thoracic vertebrae. Compare regional vertebrae differences. |
Examination of cervical and thoracic vertebrae specimens. Drawing and labeling atlas, axis, and typical cervical vertebrae. Study of thoracic vertebrae and rib articulation points. Discussion on regional adaptations for function. Comparison of vertebrae features.
|
Textbook, chalkboard, chalk, cervical and thoracic vertebrae specimens, exercise books
|
KLB Secondary Biology Form 4, Pages 131-134
|
|
5 | 2 |
SUPPORT AND MOVEMENT
|
Vertebral Column - Lumbar, Sacral and Caudal Vertebrae
|
By the end of the
lesson, the learner
should be able to:
Identify features of lumbar vertebrae and their weight-bearing adaptations. Describe structure of sacral vertebrae and sacrum formation. Explain structure of caudal vertebrae. Compare all vertebrae types. |
Examination of lumbar, sacral, and caudal vertebrae specimens. Drawing large centrum and processes of lumbar vertebrae. Study of sacrum formation and fusion. Discussion on weight support and regional specializations. Complete vertebral column analysis.
|
Textbook, chalkboard, chalk, lumbar, sacral, and caudal vertebrae specimens, complete vertebral column
|
KLB Secondary Biology Form 4, Pages 134-136
|
|
5 | 3-4 |
SUPPORT AND MOVEMENT
|
Pectoral Girdle and Forelimb Bones
Pelvic Girdle and Hindlimb Bones |
By the end of the
lesson, the learner
should be able to:
Describe structure of pectoral girdle components: scapula and clavicle. Identify forelimb bones: humerus, radius, ulna, carpals, metacarpals, phalanges. Explain joint formations and articulations. Describe structure of pelvic girdle: ilium, ischium, pubis. Identify hindlimb bones: femur, tibia, fibula, tarsals, metatarsals, phalanges. Explain weight-bearing adaptations and joint formations. |
Examination of pectoral girdle and forelimb bones. Drawing and labeling complete forelimb structure. Discussion on shoulder and elbow joint formation. Analysis of bone features and muscle attachment points. Study of pentadactyl limb pattern.
Examination of pelvic girdle and hindlimb bones. Drawing hip bone structure and acetabulum. Study of hindlimb bone features and knee joint. Discussion on weight transmission and locomotion adaptations. Comparison of forelimb and hindlimb structures. |
Textbook, chalkboard, chalk, pectoral girdle and forelimb bone specimens, exercise books
Textbook, chalkboard, chalk, pelvic girdle and hindlimb bone specimens, exercise books |
KLB Secondary Biology Form 4, Pages 136-138
KLB Secondary Biology Form 4, Pages 138-140 |
|
5 | 5 |
SUPPORT AND MOVEMENT
|
Types of Joints and Their Structure
|
By the end of the
lesson, the learner
should be able to:
Identify types of joints: immovable, gliding, and movable (synovial). Describe structure of synovial joints including cartilage, synovial fluid, and ligaments. Explain joint components and their functions. |
Examination of different joint types and synovial joint structure. Drawing synovial joint components. Discussion on cartilage function and synovial fluid properties. Analysis of joint mobility and stability. Practical observation of joint movements.
|
Textbook, chalkboard, chalk, joint specimens or models, exercise books
|
KLB Secondary Biology Form 4, Pages 140-141
|
|
6 | 1 |
SUPPORT AND MOVEMENT
|
Ball and Socket vs Hinge Joints; Movement Mechanisms
|
By the end of the
lesson, the learner
should be able to:
Compare ball and socket joints with hinge joints. Describe movement capabilities and examples of each joint type. Explain how muscles work in antagonistic pairs at joints. Understand lever systems in movement. |
Examination of hip/shoulder and elbow/knee joints. Demonstration of movement ranges and planes. Drawing joint structures and movement mechanisms. Practical demonstration of biceps and triceps action. Analysis of flexor and extensor muscle function.
|
Textbook, chalkboard, chalk, joint specimens, practical movement demonstrations, exercise books
|
KLB Secondary Biology Form 4, Pages 141-143
|
|
6 | 2 |
SUPPORT AND MOVEMENT
|
Types of Muscle Tissue and Their Functions
|
By the end of the
lesson, the learner
should be able to:
Identify three types of muscle tissue: skeletal (striated), smooth (visceral), and cardiac. Compare structure and functions of each muscle type. Explain voluntary vs involuntary muscle control. Describe muscle fiber characteristics. |
Drawing structures of different muscle types on chalkboard. Detailed comparison of muscle fiber characteristics. Discussion on muscle control mechanisms and locations. Analysis of muscle contraction properties and endurance. Examples of each muscle type in body systems.
|
Textbook, chalkboard, chalk, exercise books, muscle tissue comparison charts
|
KLB Secondary Biology Form 4, Pages 142-144
|
|
6 | 3-4 |
SUPPORT AND MOVEMENT
SUPPORT AND MOVEMENT GROWTH AND DEVELOPMENT |
Skeletal Muscle Structure and Contraction Mechanism
Smooth and Cardiac Muscle Specializations Introduction and Definitions |
By the end of the
lesson, the learner
should be able to:
Describe detailed structure of skeletal muscle fibers including myofibrils, actin, and myosin. Explain muscle contraction mechanism and sliding filament theory. Understand energy requirements and muscle fatigue. Describe structure and functions of smooth muscle in various organs. Explain cardiac muscle specializations and continuous rhythmic contractions. Compare muscle types in terms of structure, control, and endurance. |
Detailed exposition on muscle fiber structure using diagrams. Discussion on sliding filament theory and molecular basis of contraction. Explanation of ATP requirements and calcium ion role. Analysis of muscle fatigue and recovery. Practical muscle function demonstrations.
Drawing smooth and cardiac muscle structures and locations. Discussion on involuntary muscle control mechanisms. Explanation of cardiac muscle intercalated discs and myogenic nature. Comprehensive comparison of all muscle types. Analysis of muscle adaptations to function. |
Textbook, chalkboard, chalk, exercise books, detailed muscle structure diagrams
Textbook, chalkboard, chalk, exercise books, comprehensive muscle comparison tables Charts showing growth and development, Textbook, Wall charts |
KLB Secondary Biology Form 4, Pages 142-143
KLB Secondary Biology Form 4, Pages 143-144 |
|
6 | 5 |
GROWTH AND DEVELOPMENT
|
Measurement of Growth
Patterns and Rate of Growth |
By the end of the
lesson, the learner
should be able to:
To identify different methods of measuring growth. To explain linear dimensions, mass and dry weight measurements. To describe advantages and limitations of each method. To calculate growth rates. |
Discussion: Methods of measuring growth in plants and animals. Teacher exposition: Linear measurements, mass, dry weight procedures. Practical demonstration: Measuring techniques. Q/A: Why dry weight is more accurate for plants. Calculate growth rate examples.
|
Measuring instruments, Scales, Rulers, Calculators, Sample plants
Growth curve charts, Graph paper, Calculators, Sample data sets |
Certificate Biology Form 3, Pages 178-179
|
|
7 | 1 |
GROWTH AND DEVELOPMENT
|
Factors Controlling Plant Growth
Stages of Growth and Life Cycle |
By the end of the
lesson, the learner
should be able to:
To identify external factors affecting plant growth. To explain how oxygen, temperature, water, light and space influence growth. To describe internal factors including hormones. To relate factors to plant survival and adaptation. |
Detailed discussion: External factors - oxygen, temperature, water, light, space. Teacher exposition: How each factor affects biochemical processes. Q/A: Competition effects and resource limitation. Introduction to internal factors and plant hormones.
|
Environmental factor charts, Temperature scales, Light meters if available, Textbook
Plant life cycle charts, Examples of annual and perennial plants, Textbook |
Certificate Biology Form 3, Pages 180-181
|
|
7 | 2 |
GROWTH AND DEVELOPMENT
|
Seed Structure - Monocots and Dicots
Conditions for Germination |
By the end of the
lesson, the learner
should be able to:
To examine and draw structure of monocot and dicot seeds. To identify parts of bean and maize seeds. To compare structural differences between seed types. To explain functions of seed parts. |
Practical examination: Soaked bean and maize seeds. Dissection and identification of seed parts. Drawing and labeling: Bean seed cotyledons, embryo, testa. Drawing maize grain: endosperm, scutellum, plumule, radicle. Comparison table of monocot vs dicot seeds.
|
Soaked bean and maize seeds, Hand lens, Scalpels, Drawing materials, Iodine solution
Germination apparatus, Seeds at different stages, Temperature monitoring equipment, Textbook |
Certificate Biology Form 3, Pages 182-183
|
|
7 | 3-4 |
GROWTH AND DEVELOPMENT
|
Types of Germination
Germination Practical Investigation Primary Growth and Meristems |
By the end of the
lesson, the learner
should be able to:
To distinguish between epigeal and hypogeal germination. To describe hypocotyl and epicotyl elongation. To explain cotyledon behavior in each type. To give examples of plants showing each germination type. To describe primary growth in plants. To identify apical meristems and their functions. To explain tissue development from meristems. To relate meristem activity to plant growth. |
Practical observation: Germinating bean and maize seeds at different stages. Teacher exposition: Epigeal germination - hypocotyl elongation, cotyledon emergence. Discussion: Hypogeal germination - epicotyl elongation, cotyledons remain underground. Drawing comparative diagrams of both types.
Discussion: Primary growth in seedlings and herbaceous plants. Teacher exposition: Apical meristem structure and cell characteristics. Q/A: Meristem cell division and differentiation processes. Drawing diagrams showing meristem distribution in plants. |
Germinating seeds at various stages, Drawing materials, Observation trays, Hand lens
Seeds, Petri dishes, Cotton wool, Measuring rulers, Data recording sheets, Clay pots Meristem distribution charts, Drawing materials, Microscope slides of meristems, Textbook |
Certificate Biology Form 3, Pages 184-186
Certificate Biology Form 3, Pages 186-187 |
|
7 | 5 |
GROWTH AND DEVELOPMENT
|
Secondary Growth and Cambium Activity
|
By the end of the
lesson, the learner
should be able to:
To describe secondary growth in dicots. To explain vascular cambium and cork cambium functions. To identify secondary xylem and phloem formation. To relate secondary growth to plant strength and support. |
Detailed discussion: Secondary thickening in woody plants. Teacher exposition: Vascular cambium tangential divisions. Q/A: Secondary xylem and phloem development. Discussion: Cork cambium, lenticels and bark formation. Drawing cross-sections showing secondary tissues.
|
Secondary growth diagrams, Tree trunk sections, Drawing materials, Hand lens
|
Certificate Biology Form 3, Pages 186-188
|
|
8 | 1 |
GROWTH AND DEVELOPMENT
|
Annual Rings and Plant Dormancy
|
By the end of the
lesson, the learner
should be able to:
To explain annual ring formation in temperate trees. To describe factors causing plant dormancy. To identify dormancy in buds, seeds and organs. To explain dormancy advantages for plant survival. |
Discussion: Annual growth seasons and ring formation. Teacher exposition: Environmental factors triggering dormancy. Q/A: Metabolic changes during dormancy periods. Discussion: Dormancy in bulbs, corms, rhizomes. Examples of seasonal dormancy in tropical plants.
|
Tree trunk cross-sections, Dormant plant organs, Charts, Textbook
|
Certificate Biology Form 3, Page 188
|
|
8 | 2 |
GROWTH AND DEVELOPMENT
|
Seed Dormancy and Breaking Mechanisms
|
By the end of the
lesson, the learner
should be able to:
To describe seed dormancy characteristics. To explain factors that break seed dormancy. To identify vernalization, moisture, light and chemical effects. To discuss advantages of seed dormancy. |
Detailed discussion: Dormant seed characteristics and low metabolic activity. Teacher exposition: Vernalization, moisture, light requirements. Q/A: Chemical inhibitors and gibberellic acid effects. Discussion: Dormancy advantages - dispersal time, favorable conditions.
|
Dormant seeds, Germination comparison setups, Chemical solutions, Textbook
|
Certificate Biology Form 3, Pages 188-189
|
|
8 | 3-4 |
GROWTH AND DEVELOPMENT
|
Plant Growth Substances - Auxins
Gibberellins, Cytokinins and Other Hormones |
By the end of the
lesson, the learner
should be able to:
To describe discovery of plant hormones by Fritz Went. To explain auxin functions in stems, leaves, roots and fruits. To identify IAA structure and translocation. To discuss practical applications of auxins. To describe gibberellin functions and effects. To explain cytokinin roles in cell division and growth. To identify abscissic acid as growth inhibitor. To describe ethene and florigen effects. |
Teacher exposition: Went's experiments with oat coleoptiles and auxin discovery. Discussion: Auxin effects in different plant organs. Q/A: Apical dominance and parthenocarpy. Practical applications: rooting powders, herbicides, fruit development.
Discussion: Gibberellin effects on stem elongation and seed germination. Teacher exposition: Cytokinin functions in meristematic tissues. Q/A: Abscissic acid antagonistic effects. Discussion: Ethene in fruit ripening and florigen in flowering. |
Auxin experiment diagrams, Plant cuttings, Rooting powder demonstration, Textbook
Plant hormone effect charts, Ripening fruits, Textbook |
Certificate Biology Form 3, Pages 189-192
Certificate Biology Form 3, Pages 192-194 |
|
8 | 5 |
GROWTH AND DEVELOPMENT
|
Practical Applications of Plant Hormones
|
By the end of the
lesson, the learner
should be able to:
To explain commercial uses of plant hormones. To describe hormone applications in agriculture and horticulture. To identify hormone uses in crop production. To discuss economic benefits of hormone applications. |
Discussion: Commercial applications of auxins in propagation. Teacher exposition: Gibberellins in brewing and dwarf plant treatment. Q/A: Hormone use in fruit production and weed control. Case studies: Economic benefits in agriculture and horticulture.
|
Hormone application examples, Agricultural product samples, Case study materials
|
Certificate Biology Form 3, Pages 191-194
|
|
9 | 1 |
GROWTH AND DEVELOPMENT
|
Animal Growth Patterns and Life Cycles
|
By the end of the
lesson, the learner
should be able to:
To distinguish continuous from discontinuous growth in animals. To describe sigmoid growth curve phases. To explain lag, exponential, decelerating and plateau phases. To compare growth patterns in different animal groups. |
Analysis of sigmoid growth curves showing four phases. Teacher exposition: Continuous growth in mammals, birds, fish. Discussion: Discontinuous growth in insects and amphibians. Q/A: Factors affecting each growth phase.
|
Growth curve charts, Animal development examples, Graph paper, Textbook
|
Certificate Biology Form 3, Pages 193-194
|
|
9 | 2 |
GROWTH AND DEVELOPMENT
|
Complete Metamorphosis
|
By the end of the
lesson, the learner
should be able to:
To describe complete metamorphosis stages. To explain life cycle of housefly and butterfly. To identify egg, larva, pupa and adult stages. To discuss economic importance of insects with complete metamorphosis. |
Detailed study: Housefly life cycle - egg, maggot, pupa, imago. Teacher exposition: Butterfly development - caterpillar, chrysalis, adult. Q/A: Structural and behavioral differences between stages. Discussion: Economic importance - pests, silk production.
|
Insect life cycle charts, Preserved specimens if available, Drawings, Textbook
|
Certificate Biology Form 3, Pages 195-198
|
|
9 | 3-4 |
GROWTH AND DEVELOPMENT
|
Incomplete Metamorphosis
Hormonal Control of Growth in Animals |
By the end of the
lesson, the learner
should be able to:
To describe incomplete metamorphosis characteristics. To explain life cycles of cockroach and locust. To identify nymphal stages and molting process. To compare complete and incomplete metamorphosis. To identify growth hormones in different animals. To explain human growth hormone from pituitary gland. To describe insect molting hormones - ecdysone and juvenile hormone. To explain thyroxine role in frog metamorphosis. |
Discussion: Egg to adult development through nymphal stages. Teacher exposition: Cockroach and locust life cycles. Q/A: Molting/ecdysis process and wing development. Comparison table: Complete vs incomplete metamorphosis.
Discussion: Growth hormone control in mammals. Teacher exposition: Pituitary gland and human growth regulation. Q/A: Insect hormone balance - ecdysone and neotonin effects. Discussion: Thyroxine control of amphibian metamorphosis. |
Incomplete metamorphosis charts, Grasshopper specimens, Comparison tables, Textbook
Hormone control charts, Animal development diagrams, Textbook |
Certificate Biology Form 3, Pages 198-199
Certificate Biology Form 3, Page 199 |
|
9 | 5 |
GROWTH AND DEVELOPMENT
|
Growth Measurement Practical
|
By the end of the
lesson, the learner
should be able to:
To measure plant growth over time. To record linear measurements and calculate growth rates. To plot growth curves from collected data. To analyze factors affecting growth differences. |
Practical work: Long-term measurement of plant growth (height, leaf length). Data recording: Daily/weekly measurements over extended period. Mathematical analysis: Growth rate calculations. Graph plotting: Growth curves and growth rate curves.
|
Growing plants, Measuring rulers, Data recording sheets, Graph paper, Calculators
|
Certificate Biology Form 3, Pages 201-202
|
Your Name Comes Here