If this scheme pleases you, click here to download.
| WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
|---|---|---|---|---|---|---|---|---|---|
| 2 | 1 |
Geometry
|
Coordinates and Graphs - Plotting points on a Cartesian plane
|
By the end of the
lesson, the learner
should be able to:
Plot out points on a Cartesian plane; Work in groups to locate points on a plane; Appreciate the use of Cartesian plane in locating positions. |
Learners are guided to work in groups and locate the point of intersection of the x-coordinate and the y-coordinates on a Cartesian plane.
Learners plot given points such as P(3,4), Q(4,-2), R(-3,-5) and S(-1,5) on a Cartesian plane. |
How do we locate a point on a Cartesian plane?
|
-KLB Mathematics Grade 9 Textbook page 154
-Graph paper -Ruler -Pencils -Charts with Cartesian plane -Colored markers |
-Oral questions
-Observation
-Written exercise
-Peer assessment
|
|
| 2 | 2 |
Geometry
|
Coordinates and Graphs - Plotting points on a Cartesian plane
|
By the end of the
lesson, the learner
should be able to:
Plot out points on a Cartesian plane; Work in groups to locate points on a plane; Appreciate the use of Cartesian plane in locating positions. |
Learners are guided to work in groups and locate the point of intersection of the x-coordinate and the y-coordinates on a Cartesian plane.
Learners plot given points such as P(3,4), Q(4,-2), R(-3,-5) and S(-1,5) on a Cartesian plane. |
How do we locate a point on a Cartesian plane?
|
-KLB Mathematics Grade 9 Textbook page 154
-Graph paper -Ruler -Pencils -Charts with Cartesian plane -Colored markers |
-Oral questions
-Observation
-Written exercise
-Peer assessment
|
|
| 2 | 3 |
Geometry
|
Coordinates and Graphs - Drawing a straight line graph
|
By the end of the
lesson, the learner
should be able to:
Generate a table of values from the equation of a straight line; Draw a straight line graph given an equation; Appreciate the use of straight line graphs in representing linear relationships. |
Learners generate a table of values for a given linear equation (e.g., y=-2x+5).
Learners plot the points on a Cartesian plane and join them to form a straight line. Learners discuss and compare their results with other groups. |
How do we generate a table of values from a linear equation?
|
-KLB Mathematics Grade 9 Textbook page 155
-Graph paper -Ruler -Pencils -Calculator -Blackboard illustration |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
| 2 | 4 |
Geometry
|
Coordinates and Graphs - Drawing a straight line graph
|
By the end of the
lesson, the learner
should be able to:
Generate a table of values from the equation of a straight line; Draw a straight line graph given an equation; Appreciate the use of straight line graphs in representing linear relationships. |
Learners generate a table of values for a given linear equation (e.g., y=-2x+5).
Learners plot the points on a Cartesian plane and join them to form a straight line. Learners discuss and compare their results with other groups. |
How do we generate a table of values from a linear equation?
|
-KLB Mathematics Grade 9 Textbook page 155
-Graph paper -Ruler -Pencils -Calculator -Blackboard illustration |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
| 2 | 5 |
Geometry
|
Coordinates and Graphs - Drawing a straight line graph
|
By the end of the
lesson, the learner
should be able to:
Generate a table of values from the equation of a straight line; Draw a straight line graph given an equation; Appreciate the use of straight line graphs in representing linear relationships. |
Learners generate a table of values for a given linear equation (e.g., y=-2x+5).
Learners plot the points on a Cartesian plane and join them to form a straight line. Learners discuss and compare their results with other groups. |
How do we generate a table of values from a linear equation?
|
-KLB Mathematics Grade 9 Textbook page 155
-Graph paper -Ruler -Pencils -Calculator -Blackboard illustration |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
| 3 | 1 |
Geometry
|
Coordinates and Graphs - Completing tables for linear equations
|
By the end of the
lesson, the learner
should be able to:
Complete tables of values for different linear equations; Plot points from completed tables on a Cartesian plane; Enjoy drawing straight line graphs from tables of values. |
Learners complete tables of values for given linear equations such as y=2x+3.
Learners plot the points on a Cartesian plane and join them using a straight edge to form a straight line graph. Learners work in pairs to generate their own tables of values for different equations. |
How do we use tables of values to draw straight line graphs?
|
-KLB Mathematics Grade 9 Textbook page 156
-Graph paper -Ruler -Pencils -Calculator -Charts with prepared tables |
-Oral questions
-Peer assessment
-Written exercise
-Checklist
|
|
| 3 | 2 |
Geometry
|
Coordinates and Graphs - Completing tables for linear equations
|
By the end of the
lesson, the learner
should be able to:
Complete tables of values for different linear equations; Plot points from completed tables on a Cartesian plane; Enjoy drawing straight line graphs from tables of values. |
Learners complete tables of values for given linear equations such as y=2x+3.
Learners plot the points on a Cartesian plane and join them using a straight edge to form a straight line graph. Learners work in pairs to generate their own tables of values for different equations. |
How do we use tables of values to draw straight line graphs?
|
-KLB Mathematics Grade 9 Textbook page 156
-Graph paper -Ruler -Pencils -Calculator -Charts with prepared tables |
-Oral questions
-Peer assessment
-Written exercise
-Checklist
|
|
| 3 | 3 |
Geometry
|
Coordinates and Graphs - Drawing parallel lines
|
By the end of the
lesson, the learner
should be able to:
Generate tables of values for parallel line equations; Draw parallel lines on the Cartesian plane; Appreciate the relationship between parallel lines on a graph. |
Learners generate tables of values for equations such as y=x-5 and y=x-3.
Learners use the tables of values to draw the lines on the Cartesian plane. Learners measure the distance between the two lines at different positions using a set square and discuss their findings. |
How can we tell if two lines are parallel by looking at their equations?
|
-KLB Mathematics Grade 9 Textbook page 157
-Graph paper -Ruler -Set square -Calculator -Charts showing parallel lines |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
| 3 | 4 |
Geometry
|
Coordinates and Graphs - Drawing parallel lines
|
By the end of the
lesson, the learner
should be able to:
Generate tables of values for parallel line equations; Draw parallel lines on the Cartesian plane; Appreciate the relationship between parallel lines on a graph. |
Learners generate tables of values for equations such as y=x-5 and y=x-3.
Learners use the tables of values to draw the lines on the Cartesian plane. Learners measure the distance between the two lines at different positions using a set square and discuss their findings. |
How can we tell if two lines are parallel by looking at their equations?
|
-KLB Mathematics Grade 9 Textbook page 157
-Graph paper -Ruler -Set square -Calculator -Charts showing parallel lines |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
| 3 | 5 |
Geometry
|
Coordinates and Graphs - Drawing parallel lines
|
By the end of the
lesson, the learner
should be able to:
Generate tables of values for parallel line equations; Draw parallel lines on the Cartesian plane; Appreciate the relationship between parallel lines on a graph. |
Learners generate tables of values for equations such as y=x-5 and y=x-3.
Learners use the tables of values to draw the lines on the Cartesian plane. Learners measure the distance between the two lines at different positions using a set square and discuss their findings. |
How can we tell if two lines are parallel by looking at their equations?
|
-KLB Mathematics Grade 9 Textbook page 157
-Graph paper -Ruler -Set square -Calculator -Charts showing parallel lines |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
| 4 | 1 |
Geometry
|
Coordinates and Graphs - Relating gradients of parallel lines
|
By the end of the
lesson, the learner
should be able to:
Determine the gradients of straight lines; Relate the gradients of parallel lines; Value the importance of gradient in determining parallel lines. |
Learners work in groups to generate tables of values for equations y=3x-4 and y=3x-1.
Learners draw the lines on the Cartesian plane and determine their gradients. Learners compare the gradients and discuss the relationship between the gradients of parallel lines. |
What is the relationship between the gradients of parallel lines?
|
-KLB Mathematics Grade 9 Textbook page 158
-Graph paper -Ruler -Calculator -Manila paper -Digital devices (optional) |
-Oral questions
-Group discussion
-Written exercise
-Assessment rubrics
|
|
| 4 | 2 |
Geometry
|
Coordinates and Graphs - Relating gradients of parallel lines
|
By the end of the
lesson, the learner
should be able to:
Determine the gradients of straight lines; Relate the gradients of parallel lines; Value the importance of gradient in determining parallel lines. |
Learners work in groups to generate tables of values for equations y=3x-4 and y=3x-1.
Learners draw the lines on the Cartesian plane and determine their gradients. Learners compare the gradients and discuss the relationship between the gradients of parallel lines. |
What is the relationship between the gradients of parallel lines?
|
-KLB Mathematics Grade 9 Textbook page 158
-Graph paper -Ruler -Calculator -Manila paper -Digital devices (optional) |
-Oral questions
-Group discussion
-Written exercise
-Assessment rubrics
|
|
| 4 | 3 |
Geometry
|
Coordinates and Graphs - Drawing perpendicular lines
|
By the end of the
lesson, the learner
should be able to:
Generate tables of values for perpendicular line equations; Draw perpendicular lines on the Cartesian plane; Enjoy identifying perpendicular lines from their equations. |
Learners generate tables of values for equations such as y=2x+3 and y=-1/2x+4.
Learners draw the lines on the Cartesian plane and measure the angle at the point of intersection. Learners discuss and share their findings with other groups. |
How can you determine if two lines are perpendicular from their equations?
|
-KLB Mathematics Grade 9 Textbook page 159
-Graph paper -Ruler -Protractor -Set square -Calculator -Charts showing perpendicular lines |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
| 4 | 4 |
Geometry
|
Coordinates and Graphs - Drawing perpendicular lines
|
By the end of the
lesson, the learner
should be able to:
Generate tables of values for perpendicular line equations; Draw perpendicular lines on the Cartesian plane; Enjoy identifying perpendicular lines from their equations. |
Learners generate tables of values for equations such as y=2x+3 and y=-1/2x+4.
Learners draw the lines on the Cartesian plane and measure the angle at the point of intersection. Learners discuss and share their findings with other groups. |
How can you determine if two lines are perpendicular from their equations?
|
-KLB Mathematics Grade 9 Textbook page 159
-Graph paper -Ruler -Protractor -Set square -Calculator -Charts showing perpendicular lines |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
| 4 | 5 |
Geometry
|
Coordinates and Graphs - Drawing perpendicular lines
|
By the end of the
lesson, the learner
should be able to:
Generate tables of values for perpendicular line equations; Draw perpendicular lines on the Cartesian plane; Enjoy identifying perpendicular lines from their equations. |
Learners generate tables of values for equations such as y=2x+3 and y=-1/2x+4.
Learners draw the lines on the Cartesian plane and measure the angle at the point of intersection. Learners discuss and share their findings with other groups. |
How can you determine if two lines are perpendicular from their equations?
|
-KLB Mathematics Grade 9 Textbook page 159
-Graph paper -Ruler -Protractor -Set square -Calculator -Charts showing perpendicular lines |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
| 5 | 1 |
Geometry
|
Coordinates and Graphs - Relating gradients of perpendicular lines
|
By the end of the
lesson, the learner
should be able to:
Determine gradients of perpendicular lines; Find the relationship between gradients of perpendicular lines; Appreciate the application of gradient in determining perpendicular lines. |
Learners work in groups to generate tables of values for equations such as y=3x+2 and y=-1/3x+1.
Learners draw the lines on the Cartesian plane, determine their gradients, and find the product of the gradients. Learners discuss the relationship between the gradients of perpendicular lines. |
What is the product of the gradients of two perpendicular lines?
|
-KLB Mathematics Grade 9 Textbook page 160
-Graph paper -Ruler -Calculator -Set square -Charts with examples of perpendicular lines |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
| 5 | 2 |
Geometry
|
Coordinates and Graphs - Relating gradients of perpendicular lines
|
By the end of the
lesson, the learner
should be able to:
Determine gradients of perpendicular lines; Find the relationship between gradients of perpendicular lines; Appreciate the application of gradient in determining perpendicular lines. |
Learners work in groups to generate tables of values for equations such as y=3x+2 and y=-1/3x+1.
Learners draw the lines on the Cartesian plane, determine their gradients, and find the product of the gradients. Learners discuss the relationship between the gradients of perpendicular lines. |
What is the product of the gradients of two perpendicular lines?
|
-KLB Mathematics Grade 9 Textbook page 160
-Graph paper -Ruler -Calculator -Set square -Charts with examples of perpendicular lines |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
| 5 | 3 |
Geometry
|
Coordinates and Graphs - Applications of straight line graphs
|
By the end of the
lesson, the learner
should be able to:
Apply graphs of straight lines to real-life situations; Interpret information from straight line graphs; Value the use of graphs in representing real-life situations. |
Learners work in groups to generate tables of values for parking charges in two different towns.
Learners draw graphs to represent the information on the same Cartesian plane. Learners find the gradient of the two lines drawn and determine whether they are parallel. |
How can straight line graphs help us solve real-life problems?
|
-KLB Mathematics Grade 9 Textbook page 165
-Graph paper -Ruler -Calculator -Charts showing real-life applications -Manila paper for presentations |
-Oral questions
-Group discussion
-Written exercise
-Presentation
|
|
| 5 | 4 |
Geometry
|
Coordinates and Graphs - Applications of straight line graphs
|
By the end of the
lesson, the learner
should be able to:
Apply graphs of straight lines to real-life situations; Interpret information from straight line graphs; Value the use of graphs in representing real-life situations. |
Learners work in groups to generate tables of values for parking charges in two different towns.
Learners draw graphs to represent the information on the same Cartesian plane. Learners find the gradient of the two lines drawn and determine whether they are parallel. |
How can straight line graphs help us solve real-life problems?
|
-KLB Mathematics Grade 9 Textbook page 165
-Graph paper -Ruler -Calculator -Charts showing real-life applications -Manila paper for presentations |
-Oral questions
-Group discussion
-Written exercise
-Presentation
|
|
| 5 | 5 |
Geometry
|
Scale Drawing - Compass directions
|
By the end of the
lesson, the learner
should be able to:
Identify compass and true bearings in real-life situations; Draw and discuss the compass directions; Appreciate the use of compass in navigation. |
Learners carry out an activity outside the classroom where a member stands with hands spread out.
Learners draw a diagram showing the directions of the right hand, left hand, front, and back, labeling them in terms of North, South, East, and West. Learners discuss situations where knowledge of compass direction is used. |
How do we use compass directions to locate positions?
|
-KLB Mathematics Grade 9 Textbook page 168
-Magnetic compass -Plain paper -Colored pencils -Charts showing compass directions -Maps |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
| 6 | 1 |
Geometry
|
Scale Drawing - Compass bearings
|
By the end of the
lesson, the learner
should be able to:
Identify compass bearings in different situations; Measure and state positions using compass bearings; Value the importance of compass bearings in navigation. |
Learners trace diagrams showing compass bearings.
Learners measure angles from the south and north, and state the position of points using these angles. Learners draw accurately various compass bearings like N70°E, S50°W, etc. |
How do we express directions using compass bearings?
|
-KLB Mathematics Grade 9 Textbook page 170
-Protractor -Ruler -Plain paper -Charts showing compass bearings -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
| 6 | 2 |
Geometry
|
Scale Drawing - Compass bearings
|
By the end of the
lesson, the learner
should be able to:
Identify compass bearings in different situations; Measure and state positions using compass bearings; Value the importance of compass bearings in navigation. |
Learners trace diagrams showing compass bearings.
Learners measure angles from the south and north, and state the position of points using these angles. Learners draw accurately various compass bearings like N70°E, S50°W, etc. |
How do we express directions using compass bearings?
|
-KLB Mathematics Grade 9 Textbook page 170
-Protractor -Ruler -Plain paper -Charts showing compass bearings -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
| 6 | 3 |
Geometry
|
Scale Drawing - Compass bearings
|
By the end of the
lesson, the learner
should be able to:
Identify compass bearings in different situations; Measure and state positions using compass bearings; Value the importance of compass bearings in navigation. |
Learners trace diagrams showing compass bearings.
Learners measure angles from the south and north, and state the position of points using these angles. Learners draw accurately various compass bearings like N70°E, S50°W, etc. |
How do we express directions using compass bearings?
|
-KLB Mathematics Grade 9 Textbook page 170
-Protractor -Ruler -Plain paper -Charts showing compass bearings -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
| 6 | 4 |
Geometry
|
Scale Drawing - Compass bearings
|
By the end of the
lesson, the learner
should be able to:
Identify compass bearings in different situations; Measure and state positions using compass bearings; Value the importance of compass bearings in navigation. |
Learners trace diagrams showing compass bearings.
Learners measure angles from the south and north, and state the position of points using these angles. Learners draw accurately various compass bearings like N70°E, S50°W, etc. |
How do we express directions using compass bearings?
|
-KLB Mathematics Grade 9 Textbook page 170
-Protractor -Ruler -Plain paper -Charts showing compass bearings -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
| 6 | 5 |
Geometry
|
Scale Drawing - True bearings
|
By the end of the
lesson, the learner
should be able to:
Identify true bearings in real-life situations; Draw and measure true bearings; Appreciate the difference between compass and true bearings. |
Learners trace diagrams showing true bearings.
Learners measure angles from North in the clockwise direction. Learners draw accurately true bearings such as 008°, 036°, 126°, etc. |
What is the difference between compass bearings and true bearings?
|
-KLB Mathematics Grade 9 Textbook page 171
-Protractor -Ruler -Plain paper -Charts showing true bearings -Diagrams for tracing |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
| 7 | 1 |
Geometry
|
Scale Drawing - Determining compass bearings
|
By the end of the
lesson, the learner
should be able to:
Determine the bearing of one point from another; Measure angles to determine compass bearings; Enjoy determining bearings in different situations. |
Learners consider a diagram showing points Q and R.
Learners find the angle between the North line and line QR. Learners use the angle to write down the compass bearing of R from Q and discuss their results. |
How do we determine the compass bearing of one point from another?
|
-KLB Mathematics Grade 9 Textbook page 173
-Protractor -Ruler -Plain paper -Charts with bearing examples -Manila paper for group work |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
| 7 | 2 |
Geometry
|
Scale Drawing - Determining compass bearings
|
By the end of the
lesson, the learner
should be able to:
Determine the bearing of one point from another; Measure angles to determine compass bearings; Enjoy determining bearings in different situations. |
Learners consider a diagram showing points Q and R.
Learners find the angle between the North line and line QR. Learners use the angle to write down the compass bearing of R from Q and discuss their results. |
How do we determine the compass bearing of one point from another?
|
-KLB Mathematics Grade 9 Textbook page 173
-Protractor -Ruler -Plain paper -Charts with bearing examples -Manila paper for group work |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
| 7 | 3 |
Geometry
|
Scale Drawing - Determining compass bearings
|
By the end of the
lesson, the learner
should be able to:
Determine the bearing of one point from another; Measure angles to determine compass bearings; Enjoy determining bearings in different situations. |
Learners consider a diagram showing points Q and R.
Learners find the angle between the North line and line QR. Learners use the angle to write down the compass bearing of R from Q and discuss their results. |
How do we determine the compass bearing of one point from another?
|
-KLB Mathematics Grade 9 Textbook page 173
-Protractor -Ruler -Plain paper -Charts with bearing examples -Manila paper for group work |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
| 7 | 4 |
Geometry
|
Scale Drawing - Determining compass bearings
|
By the end of the
lesson, the learner
should be able to:
Determine the bearing of one point from another; Measure angles to determine compass bearings; Enjoy determining bearings in different situations. |
Learners consider a diagram showing points Q and R.
Learners find the angle between the North line and line QR. Learners use the angle to write down the compass bearing of R from Q and discuss their results. |
How do we determine the compass bearing of one point from another?
|
-KLB Mathematics Grade 9 Textbook page 173
-Protractor -Ruler -Plain paper -Charts with bearing examples -Manila paper for group work |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
| 7 | 5 |
Geometry
|
Scale Drawing - Determining true bearings
|
By the end of the
lesson, the learner
should be able to:
Determine true bearings in different situations; Measure angles to find true bearings; Value the use of true bearings in navigation. |
Learners consider a diagram showing points C and D.
Learners identify and determine the bearing of D from C by measurement. Learners measure the bearing of various points in different diagrams. |
How do we determine the true bearing of one point from another?
|
-KLB Mathematics Grade 9 Textbook page 175
-Protractor -Ruler -Plain paper -Worksheets with diagrams -Charts with bearing examples |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
| 8 | 1 |
Geometry
|
Scale Drawing - Locating points using compass bearing and distance
|
By the end of the
lesson, the learner
should be able to:
Locate a point using bearing and distance in real-life situations; Create scale drawings showing relative positions; Appreciate the use of scale drawings in real-life situations. |
Learners consider two markets U and V such that the distance between them is 6 km and U is on a bearing of N56°E from V.
Learners mark point V on paper, draw the bearing of U from V, and use a scale of 1 cm represents 1 km to locate U. Learners display and discuss their constructions. |
How do we use compass bearings and distances to locate positions?
|
-KLB Mathematics Grade 9 Textbook page 178
-Protractor -Ruler -Plain paper -Drawing board -Charts with examples -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Peer assessment
|
|
| 8 | 2 |
Geometry
|
Scale Drawing - Locating points using compass bearing and distance
|
By the end of the
lesson, the learner
should be able to:
Locate a point using bearing and distance in real-life situations; Create scale drawings showing relative positions; Appreciate the use of scale drawings in real-life situations. |
Learners consider two markets U and V such that the distance between them is 6 km and U is on a bearing of N56°E from V.
Learners mark point V on paper, draw the bearing of U from V, and use a scale of 1 cm represents 1 km to locate U. Learners display and discuss their constructions. |
How do we use compass bearings and distances to locate positions?
|
-KLB Mathematics Grade 9 Textbook page 178
-Protractor -Ruler -Plain paper -Drawing board -Charts with examples -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Peer assessment
|
|
| 8 | 3 |
Geometry
|
Scale Drawing - Locating points using compass bearing and distance
|
By the end of the
lesson, the learner
should be able to:
Locate a point using bearing and distance in real-life situations; Create scale drawings showing relative positions; Appreciate the use of scale drawings in real-life situations. |
Learners consider two markets U and V such that the distance between them is 6 km and U is on a bearing of N56°E from V.
Learners mark point V on paper, draw the bearing of U from V, and use a scale of 1 cm represents 1 km to locate U. Learners display and discuss their constructions. |
How do we use compass bearings and distances to locate positions?
|
-KLB Mathematics Grade 9 Textbook page 178
-Protractor -Ruler -Plain paper -Drawing board -Charts with examples -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Peer assessment
|
|
| 8 | 1-2 |
Geometry
|
Scale Drawing - Locating points using compass bearing and distance
|
By the end of the
lesson, the learner
should be able to:
Locate a point using bearing and distance in real-life situations; Create scale drawings showing relative positions; Appreciate the use of scale drawings in real-life situations. |
Learners consider two markets U and V such that the distance between them is 6 km and U is on a bearing of N56°E from V.
Learners mark point V on paper, draw the bearing of U from V, and use a scale of 1 cm represents 1 km to locate U. Learners display and discuss their constructions. |
How do we use compass bearings and distances to locate positions?
|
-KLB Mathematics Grade 9 Textbook page 178
-Protractor -Ruler -Plain paper -Drawing board -Charts with examples -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Peer assessment
|
|
| 8-9 |
Midterm |
||||||||
| 9 | 2 |
Geometry
|
Scale Drawing - Locating points using true bearing and distance
|
By the end of the
lesson, the learner
should be able to:
Locate a point using true bearing and distance; Create scale drawings showing relative positions; Enjoy making scale drawings using bearings and distances. |
Learners consider towns A and B where the bearing of A from B is 140° and the distance between them is 75 km.
Learners mark point B on paper, draw the bearing of A from B, and use a scale of 1 cm represents 10 km to locate A. Learners make scale drawings showing the relative positions of multiple points. |
How do we use true bearings and distances to create scale drawings?
|
-KLB Mathematics Grade 9 Textbook page 182
-Protractor -Ruler -Plain paper -Drawing board -Manila paper for presentations -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
| 9 | 3 |
Geometry
|
Scale Drawing - Locating points using true bearing and distance
|
By the end of the
lesson, the learner
should be able to:
Locate a point using true bearing and distance; Create scale drawings showing relative positions; Enjoy making scale drawings using bearings and distances. |
Learners consider towns A and B where the bearing of A from B is 140° and the distance between them is 75 km.
Learners mark point B on paper, draw the bearing of A from B, and use a scale of 1 cm represents 10 km to locate A. Learners make scale drawings showing the relative positions of multiple points. |
How do we use true bearings and distances to create scale drawings?
|
-KLB Mathematics Grade 9 Textbook page 182
-Protractor -Ruler -Plain paper -Drawing board -Manila paper for presentations -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
| 9 | 4 |
Geometry
|
Scale Drawing - Locating points using true bearing and distance
|
By the end of the
lesson, the learner
should be able to:
Locate a point using true bearing and distance; Create scale drawings showing relative positions; Enjoy making scale drawings using bearings and distances. |
Learners consider towns A and B where the bearing of A from B is 140° and the distance between them is 75 km.
Learners mark point B on paper, draw the bearing of A from B, and use a scale of 1 cm represents 10 km to locate A. Learners make scale drawings showing the relative positions of multiple points. |
How do we use true bearings and distances to create scale drawings?
|
-KLB Mathematics Grade 9 Textbook page 182
-Protractor -Ruler -Plain paper -Drawing board -Manila paper for presentations -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
| 9 | 5 |
Geometry
|
Scale Drawing - Locating points using true bearing and distance
|
By the end of the
lesson, the learner
should be able to:
Locate a point using true bearing and distance; Create scale drawings showing relative positions; Enjoy making scale drawings using bearings and distances. |
Learners consider towns A and B where the bearing of A from B is 140° and the distance between them is 75 km.
Learners mark point B on paper, draw the bearing of A from B, and use a scale of 1 cm represents 10 km to locate A. Learners make scale drawings showing the relative positions of multiple points. |
How do we use true bearings and distances to create scale drawings?
|
-KLB Mathematics Grade 9 Textbook page 182
-Protractor -Ruler -Plain paper -Drawing board -Manila paper for presentations -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
| 10 | 1 |
Geometry
|
Scale Drawing - Angle of elevation
|
By the end of the
lesson, the learner
should be able to:
Identify angles of elevation in real-life situations; Make and use a clinometer to measure angles of elevation; Appreciate the application of angles of elevation in real-life situations. |
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and above.
Learners observe how the line of sight forms an angle when looking at higher objects. Learners make a clinometer and use it to measure angles of elevation of objects in the school environment. |
What is an angle of elevation and how do we measure it?
|
-KLB Mathematics Grade 9 Textbook page 186
-Protractor -String -Weight (about 25g) -Cardboard -Straight piece of wood -Charts showing angles of elevation |
-Oral questions
-Practical activity
-Written exercise
-Project assessment
|
|
| 10 | 2 |
Geometry
|
Scale Drawing - Angle of elevation
|
By the end of the
lesson, the learner
should be able to:
Identify angles of elevation in real-life situations; Make and use a clinometer to measure angles of elevation; Appreciate the application of angles of elevation in real-life situations. |
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and above.
Learners observe how the line of sight forms an angle when looking at higher objects. Learners make a clinometer and use it to measure angles of elevation of objects in the school environment. |
What is an angle of elevation and how do we measure it?
|
-KLB Mathematics Grade 9 Textbook page 186
-Protractor -String -Weight (about 25g) -Cardboard -Straight piece of wood -Charts showing angles of elevation |
-Oral questions
-Practical activity
-Written exercise
-Project assessment
|
|
| 10 | 3 |
Geometry
|
Scale Drawing - Angle of elevation
|
By the end of the
lesson, the learner
should be able to:
Identify angles of elevation in real-life situations; Make and use a clinometer to measure angles of elevation; Appreciate the application of angles of elevation in real-life situations. |
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and above.
Learners observe how the line of sight forms an angle when looking at higher objects. Learners make a clinometer and use it to measure angles of elevation of objects in the school environment. |
What is an angle of elevation and how do we measure it?
|
-KLB Mathematics Grade 9 Textbook page 186
-Protractor -String -Weight (about 25g) -Cardboard -Straight piece of wood -Charts showing angles of elevation |
-Oral questions
-Practical activity
-Written exercise
-Project assessment
|
|
| 10 | 4 |
Geometry
|
Scale Drawing - Determining angles of elevation
|
By the end of the
lesson, the learner
should be able to:
Determine angles of elevation in different situations; Use scale drawings to find angles of elevation; Value the use of scale drawings in solving problems involving elevation. |
Learners consider a flag pole AB that is 8 m high with point C on level ground 18 m from the foot of the pole.
Learners make a scale drawing showing A, B, and C using a scale of 1 cm represents 2 m. Learners measure the angle between AC and CB and display their drawings. |
How can we use scale drawings to determine angles of elevation?
|
-KLB Mathematics Grade 9 Textbook page 187
-Protractor -Ruler -Plain paper -Drawing board -Calculator -Charts showing examples |
-Oral questions
-Scale drawing
-Written exercise
-Presentation
|
|
| 10 | 5 |
Geometry
|
Scale Drawing - Determining angles of elevation
|
By the end of the
lesson, the learner
should be able to:
Determine angles of elevation in different situations; Use scale drawings to find angles of elevation; Value the use of scale drawings in solving problems involving elevation. |
Learners consider a flag pole AB that is 8 m high with point C on level ground 18 m from the foot of the pole.
Learners make a scale drawing showing A, B, and C using a scale of 1 cm represents 2 m. Learners measure the angle between AC and CB and display their drawings. |
How can we use scale drawings to determine angles of elevation?
|
-KLB Mathematics Grade 9 Textbook page 187
-Protractor -Ruler -Plain paper -Drawing board -Calculator -Charts showing examples |
-Oral questions
-Scale drawing
-Written exercise
-Presentation
|
|
| 11 | 1 |
Geometry
|
Scale Drawing - Angle of depression
|
By the end of the
lesson, the learner
should be able to:
Identify angles of depression in real-life situations; Measure angles of depression using a clinometer; Appreciate the application of angles of depression in real-life situations. |
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and below.
Learners observe how the line of sight forms an angle when looking at lower objects. Learners use a clinometer to measure angles of depression of objects in their environment. |
What is an angle of depression and how is it related to the angle of elevation?
|
-KLB Mathematics Grade 9 Textbook page 190
-Clinometer (made in previous lesson) -String -Weight -Protractor -Charts showing angles of depression -Diagrams |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
| 11 | 2 |
Geometry
|
Scale Drawing - Angle of depression
|
By the end of the
lesson, the learner
should be able to:
Identify angles of depression in real-life situations; Measure angles of depression using a clinometer; Appreciate the application of angles of depression in real-life situations. |
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and below.
Learners observe how the line of sight forms an angle when looking at lower objects. Learners use a clinometer to measure angles of depression of objects in their environment. |
What is an angle of depression and how is it related to the angle of elevation?
|
-KLB Mathematics Grade 9 Textbook page 190
-Clinometer (made in previous lesson) -String -Weight -Protractor -Charts showing angles of depression -Diagrams |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
| 11 | 3 |
Geometry
|
Scale Drawing - Angle of depression
|
By the end of the
lesson, the learner
should be able to:
Identify angles of depression in real-life situations; Measure angles of depression using a clinometer; Appreciate the application of angles of depression in real-life situations. |
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and below.
Learners observe how the line of sight forms an angle when looking at lower objects. Learners use a clinometer to measure angles of depression of objects in their environment. |
What is an angle of depression and how is it related to the angle of elevation?
|
-KLB Mathematics Grade 9 Textbook page 190
-Clinometer (made in previous lesson) -String -Weight -Protractor -Charts showing angles of depression -Diagrams |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
| 11 | 4 |
Geometry
|
Scale Drawing - Determining angles of depression
|
By the end of the
lesson, the learner
should be able to:
Determine angles of depression in different situations; Use scale drawings to find angles of depression; Enjoy solving problems involving angles of depression. |
Learners consider a stationary boat (B) that is 120 m away from the foot (F) of a cliff of height 80 m.
Learners make a scale drawing showing the positions of A, F, and B using a scale of 1 cm represents 20 m. Learners measure the angle between the horizontal line passing through A and line AB to find the angle of depression. |
How can we use scale drawings to determine angles of depression?
|
-KLB Mathematics Grade 9 Textbook page 192
-Protractor -Ruler -Plain paper -Drawing board -Calculator -Charts with examples |
-Oral questions
-Scale drawing
-Written exercise
-Assessment rubrics
|
|
| 11 | 5 |
Geometry
|
Scale Drawing - Determining angles of depression
|
By the end of the
lesson, the learner
should be able to:
Determine angles of depression in different situations; Use scale drawings to find angles of depression; Enjoy solving problems involving angles of depression. |
Learners consider a stationary boat (B) that is 120 m away from the foot (F) of a cliff of height 80 m.
Learners make a scale drawing showing the positions of A, F, and B using a scale of 1 cm represents 20 m. Learners measure the angle between the horizontal line passing through A and line AB to find the angle of depression. |
How can we use scale drawings to determine angles of depression?
|
-KLB Mathematics Grade 9 Textbook page 192
-Protractor -Ruler -Plain paper -Drawing board -Calculator -Charts with examples |
-Oral questions
-Scale drawing
-Written exercise
-Assessment rubrics
|
|
| 12 | 1 |
Geometry
|
Scale Drawing - Application in simple surveying
|
By the end of the
lesson, the learner
should be able to:
Apply scale drawing in simple surveying; Record measurements in a field book; Value the importance of surveying in mapping. |
Learners study a survey of a small island made using a triangle ABC around it.
Learners trace the diagram and draw perpendicular lines from points along the triangle sides to the edge of the island. Learners measure the lengths of perpendicular lines and record the measurements in a tabular form in a field book. |
How do surveyors use scale drawings to create maps?
|
-KLB Mathematics Grade 9 Textbook page 195
-Drawing paper -Ruler -Set square -Pencil -Field book (notebook) -Charts with survey examples |
-Oral questions
-Practical activity
-Written exercise
-Field book assessment
|
|
| 12 | 2 |
Geometry
|
Scale Drawing - Application in simple surveying
|
By the end of the
lesson, the learner
should be able to:
Apply scale drawing in simple surveying; Record measurements in a field book; Value the importance of surveying in mapping. |
Learners study a survey of a small island made using a triangle ABC around it.
Learners trace the diagram and draw perpendicular lines from points along the triangle sides to the edge of the island. Learners measure the lengths of perpendicular lines and record the measurements in a tabular form in a field book. |
How do surveyors use scale drawings to create maps?
|
-KLB Mathematics Grade 9 Textbook page 195
-Drawing paper -Ruler -Set square -Pencil -Field book (notebook) -Charts with survey examples |
-Oral questions
-Practical activity
-Written exercise
-Field book assessment
|
|
| 12 | 3 |
Geometry
|
Scale Drawing - Application in simple surveying
|
By the end of the
lesson, the learner
should be able to:
Apply scale drawing in simple surveying; Record measurements in a field book; Value the importance of surveying in mapping. |
Learners study a survey of a small island made using a triangle ABC around it.
Learners trace the diagram and draw perpendicular lines from points along the triangle sides to the edge of the island. Learners measure the lengths of perpendicular lines and record the measurements in a tabular form in a field book. |
How do surveyors use scale drawings to create maps?
|
-KLB Mathematics Grade 9 Textbook page 195
-Drawing paper -Ruler -Set square -Pencil -Field book (notebook) -Charts with survey examples |
-Oral questions
-Practical activity
-Written exercise
-Field book assessment
|
|
| 12 | 4 |
Geometry
|
Scale Drawing - Survey using bearings and distances
|
By the end of the
lesson, the learner
should be able to:
Survey an area using bearings and distances; Create scale drawings from bearing and distance data; Appreciate the application of bearings in surveying. |
Learners study a sketch of a piece of land with positions given in terms of bearings and distances from point A.
Learners mark point A and use the bearings and distances to locate other points. Learners create scale drawings of areas described by bearings and distances from given tables. |
How do surveyors use bearings and distances to map areas?
|
-KLB Mathematics Grade 9 Textbook page 199
-Protractor -Ruler -Plain paper -Drawing board -Field book -Charts with examples |
-Oral questions
-Scale drawing
-Written exercise
-Presentation
|
|
| 12 | 5 |
Geometry
|
Scale Drawing - Survey using bearings and distances
|
By the end of the
lesson, the learner
should be able to:
Survey an area using bearings and distances; Create scale drawings from bearing and distance data; Appreciate the application of bearings in surveying. |
Learners study a sketch of a piece of land with positions given in terms of bearings and distances from point A.
Learners mark point A and use the bearings and distances to locate other points. Learners create scale drawings of areas described by bearings and distances from given tables. |
How do surveyors use bearings and distances to map areas?
|
-KLB Mathematics Grade 9 Textbook page 199
-Protractor -Ruler -Plain paper -Drawing board -Field book -Charts with examples |
-Oral questions
-Scale drawing
-Written exercise
-Presentation
|
|
| 13 | 1 |
Geometry
|
Scale Drawing - Complex surveying problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex surveying problems involving bearings and distances; Create scale drawings of multiple points and features; Show interest in scale drawing applications in real-life. |
Learners study problems involving multiple points with bearings and distances between them.
Learners create scale drawings to determine unknown distances and bearings. Learners discuss real-life applications of scale drawing in surveying and navigation. |
How do we determine unknown distances and bearings using scale drawing?
|
-KLB Mathematics Grade 9 Textbook page 202
-Protractor -Ruler -Drawing paper -Calculator -Maps -Charts with examples |
-Oral questions
-Scale drawing
-Written exercise
-Assessment rubrics
|
|
| 13 | 2 |
Geometry
|
Scale Drawing - Complex surveying problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex surveying problems involving bearings and distances; Create scale drawings of multiple points and features; Show interest in scale drawing applications in real-life. |
Learners study problems involving multiple points with bearings and distances between them.
Learners create scale drawings to determine unknown distances and bearings. Learners discuss real-life applications of scale drawing in surveying and navigation. |
How do we determine unknown distances and bearings using scale drawing?
|
-KLB Mathematics Grade 9 Textbook page 202
-Protractor -Ruler -Drawing paper -Calculator -Maps -Charts with examples |
-Oral questions
-Scale drawing
-Written exercise
-Assessment rubrics
|
|
| 13 | 3 |
Geometry
|
Scale Drawing - Complex surveying problems
|
By the end of the
lesson, the learner
should be able to:
Solve complex surveying problems involving bearings and distances; Create scale drawings of multiple points and features; Show interest in scale drawing applications in real-life. |
Learners study problems involving multiple points with bearings and distances between them.
Learners create scale drawings to determine unknown distances and bearings. Learners discuss real-life applications of scale drawing in surveying and navigation. |
How do we determine unknown distances and bearings using scale drawing?
|
-KLB Mathematics Grade 9 Textbook page 202
-Protractor -Ruler -Drawing paper -Calculator -Maps -Charts with examples |
-Oral questions
-Scale drawing
-Written exercise
-Assessment rubrics
|
|
| 13 | 4 |
Geometry
|
Scale Drawing - Project work on scale drawing
|
By the end of the
lesson, the learner
should be able to:
Apply scale drawing techniques to a real-life situation; Create a scale map of the school compound or local area; Appreciate the practical applications of scale drawing. |
Learners work in groups to create a scale map of a part of the school compound.
Learners measure distances and determine bearings between key features. Learners create a detailed scale drawing with a key showing the various features mapped. |
How can we apply scale drawing techniques to map our environment?
|
-KLB Mathematics Grade 9 Textbook page 202
-Measuring tape -Compass -Drawing paper -Colored pencils -Manila paper -Drawing instruments |
-Project work
-Group presentation
-Peer assessment
-Observation
|
|
| 13 | 5 |
Geometry
|
Scale Drawing - Project work on scale drawing
|
By the end of the
lesson, the learner
should be able to:
Apply scale drawing techniques to a real-life situation; Create a scale map of the school compound or local area; Appreciate the practical applications of scale drawing. |
Learners work in groups to create a scale map of a part of the school compound.
Learners measure distances and determine bearings between key features. Learners create a detailed scale drawing with a key showing the various features mapped. |
How can we apply scale drawing techniques to map our environment?
|
-KLB Mathematics Grade 9 Textbook page 202
-Measuring tape -Compass -Drawing paper -Colored pencils -Manila paper -Drawing instruments |
-Project work
-Group presentation
-Peer assessment
-Observation
|
|
Your Name Comes Here