Home






SCHEME OF WORK
Mathematics
Grade 9 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
2 1
Geometry
Coordinates and Graphs - Applications of straight line graphs
Scale Drawing - Compass directions
By the end of the lesson, the learner should be able to:

Apply graphs of straight lines to real-life situations;
Interpret information from straight line graphs;
Value the use of graphs in representing real-life situations.
Learners work in groups to generate tables of values for parking charges in two different towns.
Learners draw graphs to represent the information on the same Cartesian plane.
Learners find the gradient of the two lines drawn and determine whether they are parallel.
How can straight line graphs help us solve real-life problems?
-KLB Mathematics Grade 9 Textbook page 165
-Graph paper
-Ruler
-Calculator
-Charts showing real-life applications
-Manila paper for presentations
-KLB Mathematics Grade 9 Textbook page 168
-Magnetic compass
-Plain paper
-Colored pencils
-Charts showing compass directions
-Maps
-Oral questions -Group discussion -Written exercise -Presentation
2 2
Geometry
Scale Drawing - Compass bearings
Scale Drawing - True bearings
By the end of the lesson, the learner should be able to:

Identify compass bearings in different situations;
Measure and state positions using compass bearings;
Value the importance of compass bearings in navigation.
Learners trace diagrams showing compass bearings.
Learners measure angles from the south and north, and state the position of points using these angles.
Learners draw accurately various compass bearings like N70°E, S50°W, etc.
How do we express directions using compass bearings?
-KLB Mathematics Grade 9 Textbook page 170
-Protractor
-Ruler
-Plain paper
-Charts showing compass bearings
-Manila paper
-KLB Mathematics Grade 9 Textbook page 171
-Charts showing true bearings
-Diagrams for tracing
-Oral questions -Practical activity -Written exercise -Checklist
2 3
Geometry
Scale Drawing - Determining compass bearings
Scale Drawing - Determining true bearings
By the end of the lesson, the learner should be able to:

Determine the bearing of one point from another;
Measure angles to determine compass bearings;
Enjoy determining bearings in different situations.
Learners consider a diagram showing points Q and R.
Learners find the angle between the North line and line QR.
Learners use the angle to write down the compass bearing of R from Q and discuss their results.
How do we determine the compass bearing of one point from another?
-KLB Mathematics Grade 9 Textbook page 173
-Protractor
-Ruler
-Plain paper
-Charts with bearing examples
-Manila paper for group work
-KLB Mathematics Grade 9 Textbook page 175
-Worksheets with diagrams
-Oral questions -Group work -Written exercise -Observation
2 4
Geometry
Scale Drawing - Locating points using compass bearing and distance
Scale Drawing - Locating points using true bearing and distance
By the end of the lesson, the learner should be able to:

Locate a point using bearing and distance in real-life situations;
Create scale drawings showing relative positions;
Appreciate the use of scale drawings in real-life situations.
Learners consider two markets U and V such that the distance between them is 6 km and U is on a bearing of N56°E from V.
Learners mark point V on paper, draw the bearing of U from V, and use a scale of 1 cm represents 1 km to locate U.
Learners display and discuss their constructions.
How do we use compass bearings and distances to locate positions?
-KLB Mathematics Grade 9 Textbook page 178
-Protractor
-Ruler
-Plain paper
-Drawing board
-Charts with examples
-Worksheets
-KLB Mathematics Grade 9 Textbook page 182
-Manila paper for presentations
-Oral questions -Practical activity -Written exercise -Peer assessment
2 5
Geometry
Scale Drawing - Angle of elevation
Scale Drawing - Determining angles of elevation
By the end of the lesson, the learner should be able to:

Identify angles of elevation in real-life situations;
Make and use a clinometer to measure angles of elevation;
Appreciate the application of angles of elevation in real-life situations.
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and above.
Learners observe how the line of sight forms an angle when looking at higher objects.
Learners make a clinometer and use it to measure angles of elevation of objects in the school environment.
What is an angle of elevation and how do we measure it?
-KLB Mathematics Grade 9 Textbook page 186
-Protractor
-String
-Weight (about 25g)
-Cardboard
-Straight piece of wood
-Charts showing angles of elevation
-KLB Mathematics Grade 9 Textbook page 187
-Ruler
-Plain paper
-Drawing board
-Calculator
-Charts showing examples
-Oral questions -Practical activity -Written exercise -Project assessment
3 1
Geometry
Scale Drawing - Angle of depression
Scale Drawing - Determining angles of depression
By the end of the lesson, the learner should be able to:

Identify angles of depression in real-life situations;
Measure angles of depression using a clinometer;
Appreciate the application of angles of depression in real-life situations.
Learners perform an activity outside the classroom where they stand next to a flag pole and mark points at eye level and below.
Learners observe how the line of sight forms an angle when looking at lower objects.
Learners use a clinometer to measure angles of depression of objects in their environment.
What is an angle of depression and how is it related to the angle of elevation?
-KLB Mathematics Grade 9 Textbook page 190
-Clinometer (made in previous lesson)
-String
-Weight
-Protractor
-Charts showing angles of depression
-Diagrams
-KLB Mathematics Grade 9 Textbook page 192
-Ruler
-Plain paper
-Drawing board
-Calculator
-Charts with examples
-Oral questions -Practical activity -Written exercise -Observation
3 2
Geometry
Scale Drawing - Application in simple surveying
Scale Drawing - Survey using bearings and distances
By the end of the lesson, the learner should be able to:

Apply scale drawing in simple surveying;
Record measurements in a field book;
Value the importance of surveying in mapping.
Learners study a survey of a small island made using a triangle ABC around it.
Learners trace the diagram and draw perpendicular lines from points along the triangle sides to the edge of the island.
Learners measure the lengths of perpendicular lines and record the measurements in a tabular form in a field book.
How do surveyors use scale drawings to create maps?
-KLB Mathematics Grade 9 Textbook page 195
-Drawing paper
-Ruler
-Set square
-Pencil
-Field book (notebook)
-Charts with survey examples
-KLB Mathematics Grade 9 Textbook page 199
-Protractor
-Plain paper
-Drawing board
-Field book
-Charts with examples
-Oral questions -Practical activity -Written exercise -Field book assessment
3 3
Geometry
Scale Drawing - Complex surveying problems
Scale Drawing - Project work on scale drawing
By the end of the lesson, the learner should be able to:

Solve complex surveying problems involving bearings and distances;
Create scale drawings of multiple points and features;
Show interest in scale drawing applications in real-life.
Learners study problems involving multiple points with bearings and distances between them.
Learners create scale drawings to determine unknown distances and bearings.
Learners discuss real-life applications of scale drawing in surveying and navigation.
How do we determine unknown distances and bearings using scale drawing?
-KLB Mathematics Grade 9 Textbook page 202
-Protractor
-Ruler
-Drawing paper
-Calculator
-Maps
-Charts with examples
-Measuring tape
-Compass
-Colored pencils
-Manila paper
-Drawing instruments
-Oral questions -Scale drawing -Written exercise -Assessment rubrics
3 4
Geometry
Similarity and Enlargement - Similar figures and properties
Similarity and Enlargement - Identifying similar objects
By the end of the lesson, the learner should be able to:

Identify similar figures and their properties;
Measure corresponding sides and angles of similar figures;
Appreciate the concept of similarity in real-life objects.
Learners study diagrams of similar cross-sections.
Learners measure the corresponding sides of the cross-sections and find the ratio between them.
Learners measure all the corresponding angles and discover that they are equal.
What makes two figures similar?
-KLB Mathematics Grade 9 Textbook page 203
-Ruler
-Protractor
-Cut-out shapes
-Charts showing similar figures
-Manila paper
-KLB Mathematics Grade 9 Textbook page 204
-Various geometric objects
-Charts with examples
-Worksheets with diagrams
-Oral questions -Observation -Written exercise -Checklist
3 5
Geometry
Similarity and Enlargement - Drawing similar figures
Similarity and Enlargement - Properties of enlargement
By the end of the lesson, the learner should be able to:

Draw similar figures in different situations;
Calculate dimensions of similar figures using scale factors;
Enjoy creating similar figures.
Learners draw triangle ABC with given dimensions (AB=3cm, BC=4cm, and AC=6cm).
Learners are told that triangle PQR is similar to ABC with PQ=4.5cm, and they calculate the other dimensions.
Learners construct triangle PQR and compare results with other groups.
How do we construct a figure similar to a given figure?
-KLB Mathematics Grade 9 Textbook page 206
-Ruler
-Protractor
-Pair of compasses
-Drawing paper
-Calculator
-Charts with examples
-KLB Mathematics Grade 9 Textbook page 209
-Tracing paper
-Colored pencils
-Grid paper
-Charts showing enlargements
-Diagrams for tracing
-Oral questions -Practical activity -Written exercise -Assessment rubrics
4 1
Geometry
Similarity and Enlargement - Negative scale factors
Similarity and Enlargement - Drawing images of objects
By the end of the lesson, the learner should be able to:

Determine properties of enlargement with negative scale factors;
Locate centers of enlargement with negative scale factors;
Appreciate the concept of negative scale factors in enlargements.
Learners trace diagrams showing an object and its image where the center of enlargement is between them.
Learners join corresponding points to locate the center of enlargement.
Learners find the ratio of distances from the center to corresponding points and note that the image is on the opposite side of the object.
What happens when an enlargement has a negative scale factor?
-KLB Mathematics Grade 9 Textbook page 211
-Ruler
-Tracing paper
-Grid paper
-Colored pencils
-Charts showing negative scale factor enlargements
-Diagrams for tracing
-KLB Mathematics Grade 9 Textbook page 214
-Charts showing steps of enlargement
-Manila paper
-Oral questions -Practical activity -Written exercise -Checklist
4 2
Geometry
Similarity and Enlargement - Linear scale factor
Similarity and Enlargement - Using coordinates in enlargement
By the end of the lesson, the learner should be able to:

Determine the linear scale factor of similar figures;
Calculate unknown dimensions using linear scale factors;
Value the application of linear scale factors in real-life problems.
Learners consider similar cones and find the ratios of their corresponding dimensions.
Learners study similar triangles and calculate the linear scale factor.
Learners use the scale factor to find unknown dimensions of similar figures.
How do we use linear scale factors to calculate unknown dimensions of similar figures?
-KLB Mathematics Grade 9 Textbook page 216
-Ruler
-Calculator
-Similar objects of different sizes
-Charts with examples
-Worksheets
-KLB Mathematics Grade 9 Textbook page 218
-Grid paper
-Colored pencils
-Charts with coordinate examples
-Oral questions -Group work -Written exercise -Assessment rubrics
4 3
Geometry
Similarity and Enlargement - Applications of similarity
Trigonometry - Angles and sides of right-angled triangles
By the end of the lesson, the learner should be able to:

Apply similarity concepts to solve real-life problems;
Calculate heights and distances using similar triangles;
Value the practical applications of similarity in everyday life.
Learners solve problems involving similar triangles to find unknown heights and distances.
Learners discuss how similarity is used in fields such as architecture, photography, and engineering.
Learners work on practical applications of similarity in the environment.
How can we use similarity to solve real-life problems?
-KLB Mathematics Grade 9 Textbook page 219
-Ruler
-Calculator
-Drawing paper
-Charts with real-life applications
-Manila paper for presentations
-KLB Mathematics Grade 9 Textbook page 220
-Protractor
-Set square
-Charts with labeled triangles
-Colored markers
-Oral questions -Problem-solving -Written exercise -Group presentation
4 4
Geometry
Trigonometry - Sine ratio
Trigonometry - Cosine ratio
By the end of the lesson, the learner should be able to:

Identify sine ratio from a right-angled triangle;
Calculate sine of angles in right-angled triangles;
Value the use of sine ratio in solving problems.
Learners draw triangles with specific angles and sides.
Learners draw perpendiculars from points on one side to another and measure their lengths.
Learners calculate ratios of opposite side to hypotenuse for different angles and discover the sine ratio.
What is the sine of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 222
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing sine ratio
-Manila paper
-KLB Mathematics Grade 9 Textbook page 223
-Charts showing cosine ratio
-Worksheets
-Oral questions -Practical activity -Written exercise -Assessment rubrics
4 5
Geometry
Trigonometry - Tangent ratio
By the end of the lesson, the learner should be able to:

Identify tangent ratio from a right-angled triangle;
Calculate tangent of angles in right-angled triangles;
Appreciate the importance of tangent ratio in problem-solving.
Learners draw triangle ABC with specific angles and mark points on BC.
Learners draw perpendiculars from these points to AC and measure their lengths.
Learners calculate ratios of opposite side to adjacent side for different angles and discover the tangent ratio.
What is the tangent of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 225
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing tangent ratio
-Manila paper
-Oral questions -Practical activity -Written exercise -Checklist
5 1
Geometry
Trigonometry - Reading tables of sines
Trigonometry - Reading tables of cosines and tangents
By the end of the lesson, the learner should be able to:

Read tables of trigonometric ratios of acute angles;
Find the sine values of different angles using tables;
Value the importance of mathematical tables in finding trigonometric ratios.
Learners study a part of the table of sines.
Learners use the table to look for specific angles and find their sine values.
Learners find sine values of angles with decimal parts using the 'ADD' column in the tables.
How do we use mathematical tables to find the sine of an angle?
-KLB Mathematics Grade 9 Textbook page 227
-Mathematical tables
-Calculator
-Worksheets
-Chart showing how to read tables
-Sample exercises
-KLB Mathematics Grade 9 Textbook page 229-231
-Oral questions -Practical activity -Written exercise -Assessment rubrics
5 2
Geometry
Trigonometry - Using calculators for trigonometric ratios
Trigonometry - Calculating lengths using trigonometric ratios
By the end of the lesson, the learner should be able to:

Determine trigonometric ratios of acute angles using calculators;
Compare values obtained from tables and calculators;
Value the use of calculators in finding trigonometric ratios.
Learners use calculators to find trigonometric ratios of specific angles.
Learners compare values obtained from calculators with those from mathematical tables.
Learners use calculators to find sine, cosine, and tangent of various angles.
How do we use calculators to find trigonometric ratios?
-KLB Mathematics Grade 9 Textbook page 233
-Scientific calculators
-Mathematical tables
-Worksheets
-Chart showing calculator keys
-Sample exercises
-KLB Mathematics Grade 9 Textbook page 234
-Ruler
-Drawing paper
-Charts with examples
-Oral questions -Practical activity -Written exercise -Checklist
5 3
Geometry
Trigonometry - Calculating angles using trigonometric ratios
Trigonometry - Application in heights and distances
By the end of the lesson, the learner should be able to:

Use trigonometric ratios to calculate angles in right-angled triangles;
Apply inverse trigonometric functions to find angles;
Enjoy solving problems involving trigonometric ratios.
Learners consider right-angled triangles with known sides.
Learners calculate trigonometric ratios using the known sides and use tables or calculators to find the corresponding angles.
Learners solve problems involving finding angles in right-angled triangles.
How do we find unknown angles in right-angled triangles using trigonometric ratios?
-KLB Mathematics Grade 9 Textbook page 235
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with examples
-Worksheets
-KLB Mathematics Grade 9 Textbook page 237
-Charts with real-life examples
-Manila paper
-Oral questions -Group work -Written exercise -Observation
5 4
Geometry
Trigonometry - Application in navigation
Trigonometry - Review and mixed applications
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios in navigation problems;
Calculate distances and bearings using trigonometry;
Appreciate the importance of trigonometry in navigation.
Learners solve problems involving finding distances between locations given bearings and distances from a reference point.
Learners calculate bearings between points using trigonometric ratios.
Learners discuss how pilots, sailors, and navigators use trigonometry.
How is trigonometry used in navigation and determining positions?
-KLB Mathematics Grade 9 Textbook page 238
-Scientific calculators
-Mathematical tables
-Ruler
-Protractor
-Maps
-Charts with navigation examples
-KLB Mathematics Grade 9 Textbook page 240
-Drawing paper
-Past examination questions
-Oral questions -Problem-solving -Written exercise -Assessment rubrics
5 5
Data Handling and Probability
Data Interpretation - Appropriate class width
Data Interpretation - Finding range and creating groups
By the end of the lesson, the learner should be able to:

Determine appropriate class width for grouping data;
Work with data to establish suitable class widths;
Appreciate the importance of appropriate class widths in data representation.
Learners work in groups to consider masses of 40 people in kilograms.
Learners find the difference between the smallest and highest mass (range).
Learners group the masses in smaller groups with different class widths and identify the number of groups formed in each case.
How do we determine an appropriate class width for a given set of data?
-KLB Mathematics Grade 9 Textbook page 244
-Calculator
-Graph paper
-Manila paper
-Rulers
-Colored markers
-KLB Mathematics Grade 9 Textbook page 245
-Data sets
-Chart with examples
-Oral questions -Group presentations -Written exercise -Observation
6 1
Data Handling and Probability
Data Interpretation - Frequency distribution tables
Data Interpretation - Creating frequency tables with different class intervals
By the end of the lesson, the learner should be able to:

Draw frequency distribution tables of grouped data;
Use tally marks to organize data into frequency tables;
Value the importance of organizing data in tables.
Learners are presented with data on the number of tree seedlings that survived in 50 different schools.
Learners copy and complete a frequency distribution table using tally marks and frequencies.
Learners discuss and share their completed tables with other groups.
How do we organize data in a frequency distribution table?
-KLB Mathematics Grade 9 Textbook page 247
-Chart paper
-Ruler
-Calculator
-Manila paper
-Colored markers
-Graph paper
-Worksheets with data
-Oral questions -Group presentations -Written exercise -Checklist
6 2
Data Handling and Probability
Data Interpretation - Modal class
Data Interpretation - Mean of ungrouped data
By the end of the lesson, the learner should be able to:

Identify the modal class of grouped data;
Determine the class with the highest frequency;
Develop interest in finding the modal class in real-life data.
Learners are presented with assessment marks in a mathematics test for 32 learners.
Learners draw a frequency distribution table to represent the information.
Learners identify and write down the class with the highest frequency (modal class).
What is the modal class and how is it determined?
-KLB Mathematics Grade 9 Textbook page 248
-Calculator
-Ruler
-Graph paper
-Chart showing frequency distribution tables
-Colored markers
-KLB Mathematics Grade 9 Textbook page 249
-Chart showing frequency tables
-Worksheets
-Manila paper
-Oral questions -Group work -Written exercise -Peer assessment
6 3
Data Handling and Probability
Data Interpretation - Mean of grouped data
Data Interpretation - Mean calculation in real-life situations
By the end of the lesson, the learner should be able to:

Calculate the mean of grouped data;
Find the midpoint of class intervals and use in calculations;
Value the importance of mean in summarizing data.
Learners consider a frequency distribution table representing masses in kilograms of learners in a class.
Learners complete a table by finding midpoints of class intervals and calculating fx.
Learners find the sum of frequencies, sum of fx, and divide to find the mean.
How do we calculate the mean of grouped data?
-KLB Mathematics Grade 9 Textbook page 250
-Calculator
-Graph paper
-Manila paper
-Chart with examples
-Worksheets
-KLB Mathematics Grade 9 Textbook page 251
-Colored markers
-Oral questions -Written exercise -Group presentations -Checklist
6 4
Data Handling and Probability
Data Interpretation - Median of grouped data
Data Interpretation - Calculating median using formula
By the end of the lesson, the learner should be able to:

Determine the median of grouped data;
Find cumulative frequencies to locate the median class;
Value the importance of median in data interpretation.
Learners consider the mass of 50 learners recorded in a table.
Learners complete the column for cumulative frequency.
Learners find the sum of frequency, divide by 2, and identify the position of the median mass.
How do we determine the median of grouped data?
-KLB Mathematics Grade 9 Textbook page 252
-Calculator
-Chart showing cumulative frequency tables
-Worksheets
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 253
-Graph paper
-Chart showing median formula
-Oral questions -Written exercise -Group presentations -Observation
6 5
Data Handling and Probability
Data Interpretation - Median calculations in real-life situations
Probability - Equally likely outcomes
By the end of the lesson, the learner should be able to:

Calculate median in real-life data situations;
Apply the median formula to various data sets;
Appreciate the role of median in data interpretation.
Learners are presented with data on number of nights spent by people in a table.
Learners complete the cumulative frequency column and determine the median class.
Learners apply the median formula to calculate the median value.
How is the median used to interpret real-life data?
-KLB Mathematics Grade 9 Textbook page 254
-Calculator
-Chart with example calculations
-Worksheets with real-life data
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 256
-Coins
-Chart paper
-Table for recording outcomes
-Oral questions -Written exercise -Group presentations -Peer assessment
7 1
Data Handling and Probability
Probability - Range of probability
Probability - Complementary events
By the end of the lesson, the learner should be able to:

Determine the range of probability of an event;
Understand that probability ranges from 0 to 1;
Value the concept of probability range in real-life situations.
Learners use a fair die in this activity and toss it 20 times.
Learners record the number of times each face shows up and calculate relative frequencies.
Learners find the sum of the fractions and discuss that probabilities range from 0 to 1.
What is the range of probability values and what do these values signify?
-KLB Mathematics Grade 9 Textbook page 257
-Dice
-Table for recording outcomes
-Chart showing probability scale (0-1)
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 258
-Calculator
-Chart showing complementary events
-Worksheets with problems
-Oral questions -Practical activity -Written exercise -Group presentations
7 2
Data Handling and Probability
Probability - Mutually exclusive events
Probability - Experiments with mutually exclusive events
By the end of the lesson, the learner should be able to:

Identify mutually exclusive events in real-life situations;
Recognize events that cannot occur simultaneously;
Appreciate the concept of mutually exclusive events.
Learners flip a fair coin several times and record the face that shows up.
Learners discuss that heads and tails cannot show up at the same time (mutually exclusive).
Learners identify mutually exclusive events from various examples.
What makes events mutually exclusive?
-KLB Mathematics Grade 9 Textbook page 258
-Coins
-Chart with examples of mutually exclusive events
-Flashcards with different scenarios
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 259
-Dice
-Colored objects in boxes
-Calculator
-Chart showing probability calculations
-Worksheets with problems
-Oral questions -Group discussions -Written exercise -Observation
7 3
Data Handling and Probability
Probability - Independent events
Probability - Calculating probabilities of independent events
By the end of the lesson, the learner should be able to:

Perform experiments involving independent events;
Understand that outcome of one event doesn't affect another;
Show interest in applying independent events probability in real-life.
Learners toss a fair coin and a fair die at the same time and record outcomes.
Learners repeat the experiment several times.
Learners discuss that the outcome of the coin toss doesn't affect the outcome of the die roll (independence).
What makes events independent from each other?
-KLB Mathematics Grade 9 Textbook page 260
-Coins and dice
-Table for recording outcomes
-Chart showing examples of independent events
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 261
-Calculator
-Chart showing multiplication rule
-Worksheets with problems
-Oral questions -Practical activity -Group discussions -Observation
7 4
Data Handling and Probability
Probability - Tree diagrams for single outcomes
Probability - Complex tree diagrams
By the end of the lesson, the learner should be able to:

Draw a probability tree diagram for a single outcome;
Represent probability situations using tree diagrams;
Value the use of tree diagrams in organizing probability information.
Learners write down possible outcomes when a fair coin is flipped once.
Learners find the total number of all outcomes and probability of each outcome.
Learners complete a tree diagram with possible outcomes and their probabilities.
How do tree diagrams help us understand probability situations?
-KLB Mathematics Grade 9 Textbook page 262
-Chart paper
-Ruler
-Worksheets with blank tree diagrams
-Chart showing completed tree diagrams
-Colored markers
-KLB Mathematics Grade 9 Textbook page 263
-Calculator
-Chart showing complex tree diagrams
-Worksheets with problems
-Oral questions -Practical activity -Group work assessment -Checklist
7 5
Data Handling and Probability
Probability - Complex tree diagrams
By the end of the lesson, the learner should be able to:

Your Name Comes Here


Download

Feedback