Home






SCHEME OF WORK
Mathematics
Grade 9 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
2 1
MEASUREMENTS
Money - Converting Currency from One to Another in Real Life Situations
Money - Working Out Export Duties Charged on Goods
By the end of the lesson, the learner should be able to:

-Convert Kenyan currency to foreign currency;
-Use exchange rate tables to convert currencies;
-Solve problems involving currency conversion;
-Show interest in understanding international currency exchange.
In groups, learners are guided to:
-Review the concept of exchange rates;
-Understand that the selling rate is used when converting Kenyan Shillings to foreign currency;
-Convert Kenyan Shillings to various foreign currencies using the selling rate;
-Solve problems involving currency conversion;
-Discuss real-life situations where currency conversion is necessary;
-Discuss and share results with other groups.
How do exchange rates affect international trade?
-Mathematics learners book grade 9 page 142;
-Exchange rate tables from newspapers or online sources;
-Scientific calculators;
-Digital devices for checking current exchange rates;
-Charts showing examples of currency conversions.
-Mathematics learners book grade 9 page 143;
-Digital devices for research;
-Charts showing export duty rates;
-Examples of export scenarios.
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
2 2
MEASUREMENTS
Money - Working Out Import Duties Charged on Goods
Money - Working Out Excise Duty Charged on Goods
By the end of the lesson, the learner should be able to:

-Define import duty;
-Calculate import duty on goods;
-Identify goods exempted from import duty;
-Show interest in understanding import duties.
In groups, learners are guided to:
-Use digital devices to search for the meaning of import duty;
-Research the percentage of import duty on different goods and services;
-Identify examples of goods exempted from import duty in Kenya;
-Calculate import duty on goods using the formula: Import Duty = Customs Value × Duty Rate;
-Solve problems involving import duties;
-Discuss and share findings with other groups.
What are import duties and why are they charged?
-Mathematics learners book grade 9 page 143;
-Digital devices for research;
-Scientific calculators;
-Charts showing import duty rates;
-Examples of import scenarios.
-Mathematics learners book grade 9 page 145;
-Charts showing excise duty rates;
-Examples of goods subject to excise duty.
-Observation; -Oral questions; -Written exercises; -Research presentation.
2 3
MEASUREMENTS
Money - Determining Value-Added Tax (VAT) Charged on Goods and Services
By the end of the lesson, the learner should be able to:

-Define Value Added Tax (VAT);
-Identify goods and services that attract VAT;
-Calculate VAT on goods and services;
-Appreciate the role of VAT in government revenue collection.
In groups, learners are guided to:
-Use digital devices or print media to search for information on VAT;
-Research goods that attract VAT;
-Research the percentage of VAT charged on goods and services;
-Study receipts to identify VAT amounts;
-Calculate VAT on various goods and services;
-Discuss and share findings with other groups.
How is VAT calculated and why is it charged?
-Mathematics learners book grade 9 page 145;
-Supermarket receipts showing VAT;
-Digital devices for research;
-Scientific calculators;
-Charts showing VAT calculations.
-Observation; -Oral questions; -Written exercises; -Analysis of receipts.
2 4
MEASUREMENTS
Approximations and Errors - Approximating Quantities in Measurements
Approximations and Errors - Determining Errors Using Estimations and Actual Measurements
By the end of the lesson, the learner should be able to:

-Approximate quantities using arbitrary units;
-Use strides, hand spans, and other body measurements to estimate lengths;
-Compare estimated values with actual measurements;
-Show interest in approximation techniques.
In groups, learners are guided to:
-Measure the lengths of their strides in centimeters;
-Measure the length of the classroom using strides;
-Estimate the length of the classroom in centimeters;
-Use hand spans to estimate lengths of various objects;
-Use thumb lengths to estimate smaller lengths;
-Discuss and share findings with other groups.
How do we estimate measurements of different quantities?
-Mathematics learners book grade 9 page 148;
-Measuring tapes/rulers;
-Various objects to measure;
-Charts showing conventional and arbitrary units;
-Open space for measuring with strides.
-Mathematics learners book grade 9 page 149;
-Weighing scales/balances;
-Scientific calculators.
-Observation; -Oral questions; -Practical assessment; -Group presentations.
2 5
MEASUREMENTS
Geometry
Approximations and Errors - Determining Percentage Errors Using Actual Measurements
Similarity and Enlargement - Similar figures and properties
By the end of the lesson, the learner should be able to:

-Define percentage error;
-Calculate percentage error in measurements;
-Interpret the meaning of percentage error;
-Show interest in minimizing errors in measurements.
In groups, learners are guided to:
-Review the concept of error in measurements;
-Express error as a ratio of the actual value;
-Convert the ratio to a percentage to find percentage error;
-Calculate percentage error using the formula: Percentage Error = (Error/Actual Value) × 100%;
-Solve problems involving percentage error;
-Discuss and share findings with other groups.
Why is percentage error more useful than absolute error?
-Mathematics learners book grade 9 page 151;
-Measuring tapes/rulers;
-Various objects to measure;
-Weighing scales/balances;
-Scientific calculators.
-KLB Mathematics Grade 9 Textbook page 203
-Ruler
-Protractor
-Cut-out shapes
-Charts showing similar figures
-Manila paper
-Observation; -Oral questions; -Written exercises; -Problem-solving assessment.
3 1
Geometry
Similarity and Enlargement - Identifying similar objects
By the end of the lesson, the learner should be able to:

Identify similar objects in the environment;
Determine if given figures are similar;
Value the concept of similarity in everyday life.
Learners collect and classify objects according to similarity.
Learners identify pairs of similar figures from given diagrams.
Learners discuss real-life examples of similar objects and their properties.
How do we recognize similar objects in our environment?
-KLB Mathematics Grade 9 Textbook page 204
-Ruler
-Protractor
-Various geometric objects
-Charts with examples
-Worksheets with diagrams
-Oral questions -Group work -Written exercise -Observation
3 2
Geometry
Similarity and Enlargement - Drawing similar figures
Similarity and Enlargement - Properties of enlargement
By the end of the lesson, the learner should be able to:

Draw similar figures in different situations;
Calculate dimensions of similar figures using scale factors;
Enjoy creating similar figures.
Learners draw triangle ABC with given dimensions (AB=3cm, BC=4cm, and AC=6cm).
Learners are told that triangle PQR is similar to ABC with PQ=4.5cm, and they calculate the other dimensions.
Learners construct triangle PQR and compare results with other groups.
How do we construct a figure similar to a given figure?
-KLB Mathematics Grade 9 Textbook page 206
-Ruler
-Protractor
-Pair of compasses
-Drawing paper
-Calculator
-Charts with examples
-KLB Mathematics Grade 9 Textbook page 209
-Tracing paper
-Colored pencils
-Grid paper
-Charts showing enlargements
-Diagrams for tracing
-Oral questions -Practical activity -Written exercise -Assessment rubrics
3 3
Geometry
Similarity and Enlargement - Negative scale factors
Similarity and Enlargement - Drawing images of objects
By the end of the lesson, the learner should be able to:

Determine properties of enlargement with negative scale factors;
Locate centers of enlargement with negative scale factors;
Appreciate the concept of negative scale factors in enlargements.
Learners trace diagrams showing an object and its image where the center of enlargement is between them.
Learners join corresponding points to locate the center of enlargement.
Learners find the ratio of distances from the center to corresponding points and note that the image is on the opposite side of the object.
What happens when an enlargement has a negative scale factor?
-KLB Mathematics Grade 9 Textbook page 211
-Ruler
-Tracing paper
-Grid paper
-Colored pencils
-Charts showing negative scale factor enlargements
-Diagrams for tracing
-KLB Mathematics Grade 9 Textbook page 214
-Charts showing steps of enlargement
-Manila paper
-Oral questions -Practical activity -Written exercise -Checklist
3 4
Geometry
Similarity and Enlargement - Linear scale factor
By the end of the lesson, the learner should be able to:

Determine the linear scale factor of similar figures;
Calculate unknown dimensions using linear scale factors;
Value the application of linear scale factors in real-life problems.
Learners consider similar cones and find the ratios of their corresponding dimensions.
Learners study similar triangles and calculate the linear scale factor.
Learners use the scale factor to find unknown dimensions of similar figures.
How do we use linear scale factors to calculate unknown dimensions of similar figures?
-KLB Mathematics Grade 9 Textbook page 216
-Ruler
-Calculator
-Similar objects of different sizes
-Charts with examples
-Worksheets
-Oral questions -Group work -Written exercise -Assessment rubrics
3 5
Geometry
Similarity and Enlargement - Using coordinates in enlargement
Similarity and Enlargement - Applications of similarity
By the end of the lesson, the learner should be able to:

Find the coordinates of images under enlargement;
Determine the center of enlargement and scale factor from given coordinates;
Appreciate the use of coordinates in describing enlargements.
Learners plot figures and their images on a grid.
Learners find the center of enlargement by drawing lines through corresponding points.
Learners calculate the scale factor using the coordinates of corresponding points.
How do we use coordinate geometry to describe and perform enlargements?
-KLB Mathematics Grade 9 Textbook page 218
-Grid paper
-Ruler
-Colored pencils
-Calculator
-Charts with coordinate examples
-KLB Mathematics Grade 9 Textbook page 219
-Drawing paper
-Charts with real-life applications
-Manila paper for presentations
-Oral questions -Practical activity -Written exercise -Observation
4 1
Geometry
Trigonometry - Angles and sides of right-angled triangles
Trigonometry - Sine ratio
By the end of the lesson, the learner should be able to:

Identify angles and sides of right-angled triangles in different situations;
Distinguish between the hypotenuse, adjacent side, and opposite side;
Appreciate the relationship between angles and sides in right-angled triangles.
Learners draw right-angled triangles with acute angles and identify the longest side (hypotenuse).
Learners identify the side which together with the hypotenuse forms the angle θ (adjacent side).
Learners identify the side facing the angle θ (opposite side).
How do we identify different sides in a right-angled triangle?
-KLB Mathematics Grade 9 Textbook page 220
-Ruler
-Protractor
-Set square
-Drawing paper
-Charts with labeled triangles
-Colored markers
-KLB Mathematics Grade 9 Textbook page 222
-Calculator
-Charts showing sine ratio
-Manila paper
-Oral questions -Observation -Written exercise -Checklist
4 2
Geometry
Trigonometry - Cosine ratio
By the end of the lesson, the learner should be able to:

Identify cosine ratio from a right-angled triangle;
Calculate cosine of angles in right-angled triangles;
Enjoy solving problems involving cosine ratio.
Learners draw triangles with specific angles and sides.
Learners calculate ratios of adjacent side to hypotenuse for different angles and discover the cosine ratio.
Learners find the cosine of marked angles in various right-angled triangles.
What is the cosine of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 223
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing cosine ratio
-Worksheets
-Oral questions -Practical activity -Written exercise -Observation
4 3
Geometry
Trigonometry - Tangent ratio
Trigonometry - Reading tables of sines
By the end of the lesson, the learner should be able to:

Identify tangent ratio from a right-angled triangle;
Calculate tangent of angles in right-angled triangles;
Appreciate the importance of tangent ratio in problem-solving.
Learners draw triangle ABC with specific angles and mark points on BC.
Learners draw perpendiculars from these points to AC and measure their lengths.
Learners calculate ratios of opposite side to adjacent side for different angles and discover the tangent ratio.
What is the tangent of an angle and how do we calculate it?
-KLB Mathematics Grade 9 Textbook page 225
-Ruler
-Protractor
-Calculator
-Drawing paper
-Charts showing tangent ratio
-Manila paper
-KLB Mathematics Grade 9 Textbook page 227
-Mathematical tables
-Worksheets
-Chart showing how to read tables
-Sample exercises
-Oral questions -Practical activity -Written exercise -Checklist
4 4
Geometry
Trigonometry - Reading tables of cosines and tangents
Trigonometry - Using calculators for trigonometric ratios
By the end of the lesson, the learner should be able to:

Read tables of cosines and tangents for acute angles;
Find cosine and tangent values using mathematical tables;
Enjoy using mathematical tables to find trigonometric ratios.
Learners study parts of the tables of cosines and tangents.
Learners use the tables to find cosine and tangent values of specific angles.
Learners find values of angles with decimal parts using the 'SUBTRACT' column for cosines and 'ADD' column for tangents.
How do we use mathematical tables to find cosine and tangent values?
-KLB Mathematics Grade 9 Textbook page 229-231
-Mathematical tables
-Calculator
-Worksheets
-Chart showing how to read tables
-Sample exercises
-KLB Mathematics Grade 9 Textbook page 233
-Scientific calculators
-Chart showing calculator keys
-Oral questions -Practical activity -Written exercise -Observation
4 5
Geometry
Trigonometry - Calculating lengths using trigonometric ratios
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios to calculate lengths of right-angled triangles;
Use sine, cosine, and tangent ratios to find unknown sides;
Appreciate the application of trigonometry in solving real-life problems.
Learners consider a right-angled triangle and find the trigonometric ratio appropriate for finding an unknown side.
Learners find the value of the ratio from tables or calculators and relate it to the expression to find the unknown side.
Learners solve problems involving finding sides of right-angled triangles.
How do we use trigonometric ratios to find unknown sides in right-angled triangles?
-KLB Mathematics Grade 9 Textbook page 234
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with examples
-Worksheets
-Oral questions -Group work -Written exercise -Assessment rubrics
5 1
Geometry
Trigonometry - Calculating angles using trigonometric ratios
Trigonometry - Application in heights and distances
By the end of the lesson, the learner should be able to:

Use trigonometric ratios to calculate angles in right-angled triangles;
Apply inverse trigonometric functions to find angles;
Enjoy solving problems involving trigonometric ratios.
Learners consider right-angled triangles with known sides.
Learners calculate trigonometric ratios using the known sides and use tables or calculators to find the corresponding angles.
Learners solve problems involving finding angles in right-angled triangles.
How do we find unknown angles in right-angled triangles using trigonometric ratios?
-KLB Mathematics Grade 9 Textbook page 235
-Scientific calculators
-Mathematical tables
-Ruler
-Drawing paper
-Charts with examples
-Worksheets
-KLB Mathematics Grade 9 Textbook page 237
-Charts with real-life examples
-Manila paper
-Oral questions -Group work -Written exercise -Observation
5 2
Geometry
Trigonometry - Application in navigation
Trigonometry - Review and mixed applications
By the end of the lesson, the learner should be able to:

Apply trigonometric ratios in navigation problems;
Calculate distances and bearings using trigonometry;
Appreciate the importance of trigonometry in navigation.
Learners solve problems involving finding distances between locations given bearings and distances from a reference point.
Learners calculate bearings between points using trigonometric ratios.
Learners discuss how pilots, sailors, and navigators use trigonometry.
How is trigonometry used in navigation and determining positions?
-KLB Mathematics Grade 9 Textbook page 238
-Scientific calculators
-Mathematical tables
-Ruler
-Protractor
-Maps
-Charts with navigation examples
-KLB Mathematics Grade 9 Textbook page 240
-Drawing paper
-Past examination questions
-Oral questions -Problem-solving -Written exercise -Assessment rubrics
5 3
Data Handling and Probability
Data Interpretation - Appropriate class width
By the end of the lesson, the learner should be able to:

Determine appropriate class width for grouping data;
Work with data to establish suitable class widths;
Appreciate the importance of appropriate class widths in data representation.
Learners work in groups to consider masses of 40 people in kilograms.
Learners find the difference between the smallest and highest mass (range).
Learners group the masses in smaller groups with different class widths and identify the number of groups formed in each case.
How do we determine an appropriate class width for a given set of data?
-KLB Mathematics Grade 9 Textbook page 244
-Calculator
-Graph paper
-Manila paper
-Rulers
-Colored markers
-Oral questions -Group presentations -Written exercise -Observation
5 4
Data Handling and Probability
Data Interpretation - Finding range and creating groups
Data Interpretation - Frequency distribution tables
By the end of the lesson, the learner should be able to:

Calculate the range of a set of data;
Divide data into suitable class intervals;
Show interest in grouping data for better representation.
Learners are presented with marks scored by 40 students in a mathematics test.
Learners find the range of the data.
Learners complete a table using a class width of 10 and determine the number of classes formed.
How does the range of data help us determine appropriate class intervals?
-KLB Mathematics Grade 9 Textbook page 245
-Calculator
-Manila paper
-Data sets
-Chart with examples
-Colored markers
-KLB Mathematics Grade 9 Textbook page 247
-Chart paper
-Ruler
-Oral questions -Written exercise -Observation -Group work assessment
5 5
Data Handling and Probability
Data Interpretation - Creating frequency tables with different class intervals
Data Interpretation - Modal class
By the end of the lesson, the learner should be able to:

Construct frequency tables starting with different class intervals;
Use tally marks to represent data in frequency tables;
Appreciate the use of different class intervals in data representation.
Learners construct a frequency table for given data starting from the class interval 60-64.
Learners use tally marks to count frequency of data in each class.
Learners compare and discuss different frequency tables.
How do we choose appropriate starting points for class intervals?
-KLB Mathematics Grade 9 Textbook page 247
-Calculator
-Ruler
-Graph paper
-Manila paper
-Worksheets with data
-KLB Mathematics Grade 9 Textbook page 248
-Chart showing frequency distribution tables
-Colored markers
-Oral questions -Written exercise -Group presentations -Observation
6 1
Data Handling and Probability
Data Interpretation - Mean of ungrouped data
By the end of the lesson, the learner should be able to:

Calculate the mean of ungrouped data in a frequency table;
Multiply each value by its frequency and find their sum;
Show interest in calculating mean in real-life situations.
Learners consider the height, in metres, of 10 people recorded in a frequency distribution table.
Learners complete a table showing the product of height and frequency (fx).
Learners find the sum of frequencies, sum of fx, and divide to find the mean.
How do we calculate the mean of data presented in a frequency table?
-KLB Mathematics Grade 9 Textbook page 249
-Calculator
-Chart showing frequency tables
-Worksheets
-Manila paper
-Colored markers
-Oral questions -Written exercise -Observation -Assessment rubrics
6 2
Data Handling and Probability
Data Interpretation - Mean of grouped data
Data Interpretation - Mean calculation in real-life situations
By the end of the lesson, the learner should be able to:

Calculate the mean of grouped data;
Find the midpoint of class intervals and use in calculations;
Value the importance of mean in summarizing data.
Learners consider a frequency distribution table representing masses in kilograms of learners in a class.
Learners complete a table by finding midpoints of class intervals and calculating fx.
Learners find the sum of frequencies, sum of fx, and divide to find the mean.
How do we calculate the mean of grouped data?
-KLB Mathematics Grade 9 Textbook page 250
-Calculator
-Graph paper
-Manila paper
-Chart with examples
-Worksheets
-KLB Mathematics Grade 9 Textbook page 251
-Colored markers
-Oral questions -Written exercise -Group presentations -Checklist
6 3
Data Handling and Probability
Data Interpretation - Median of grouped data
Data Interpretation - Calculating median using formula
By the end of the lesson, the learner should be able to:

Determine the median of grouped data;
Find cumulative frequencies to locate the median class;
Value the importance of median in data interpretation.
Learners consider the mass of 50 learners recorded in a table.
Learners complete the column for cumulative frequency.
Learners find the sum of frequency, divide by 2, and identify the position of the median mass.
How do we determine the median of grouped data?
-KLB Mathematics Grade 9 Textbook page 252
-Calculator
-Chart showing cumulative frequency tables
-Worksheets
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 253
-Graph paper
-Chart showing median formula
-Oral questions -Written exercise -Group presentations -Observation
6 4
Data Handling and Probability
Data Interpretation - Median calculations in real-life situations
By the end of the lesson, the learner should be able to:

Calculate median in real-life data situations;
Apply the median formula to various data sets;
Appreciate the role of median in data interpretation.
Learners are presented with data on number of nights spent by people in a table.
Learners complete the cumulative frequency column and determine the median class.
Learners apply the median formula to calculate the median value.
How is the median used to interpret real-life data?
-KLB Mathematics Grade 9 Textbook page 254
-Calculator
-Chart with example calculations
-Worksheets with real-life data
-Manila paper
-Colored markers
-Oral questions -Written exercise -Group presentations -Peer assessment
6 5
Data Handling and Probability
Probability - Equally likely outcomes
Probability - Range of probability
By the end of the lesson, the learner should be able to:

Perform experiments involving equally likely outcomes;
Record outcomes of chance experiments;
Appreciate that some events have equal chances of occurring.
Learners work in groups to flip a fair coin 20 times.
Learners record the number of times heads and tails come up.
Learners divide the number of times heads or tails comes up by the total number of tosses to find probabilities.
What makes events equally likely to occur?
-KLB Mathematics Grade 9 Textbook page 256
-Coins
-Chart paper
-Table for recording outcomes
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 257
-Dice
-Chart showing probability scale (0-1)
-Oral questions -Practical activity -Group work assessment -Observation
7 1
Data Handling and Probability
Probability - Complementary events
Probability - Mutually exclusive events
By the end of the lesson, the learner should be able to:

Calculate probability of complementary events;
Understand that sum of probabilities of complementary events is 1;
Show interest in applying complementary probability in real-life situations.
Learners discuss examples of complementary events.
Learners solve problems where the probability of one event is given and they need to find the probability of its complement.
Learners verify that the sum of probabilities of an event and its complement equals 1.
How are complementary events related in terms of their probabilities?
-KLB Mathematics Grade 9 Textbook page 258
-Calculator
-Chart showing complementary events
-Worksheets with problems
-Manila paper
-Colored markers
-Coins
-Chart with examples of mutually exclusive events
-Flashcards with different scenarios
-Oral questions -Written exercise -Group work assessment -Observation
7 2
Data Handling and Probability
Probability - Experiments with mutually exclusive events
By the end of the lesson, the learner should be able to:

Perform experiments of single chance involving mutually exclusive events;
Calculate probability of mutually exclusive events;
Value the application of mutually exclusive events in real-life.
Learners toss a fair die several times and record the numbers that show up.
Learners solve problems involving mutually exclusive events like picking a pen of a specific color from a box.
Learners find probabilities of individual events and their union.
How do we calculate the probability of mutually exclusive events?
-KLB Mathematics Grade 9 Textbook page 259
-Dice
-Colored objects in boxes
-Calculator
-Chart showing probability calculations
-Worksheets with problems
-Oral questions -Practical activity -Written exercise -Assessment rubrics
7 3
Data Handling and Probability
Probability - Independent events
Probability - Calculating probabilities of independent events
By the end of the lesson, the learner should be able to:

Perform experiments involving independent events;
Understand that outcome of one event doesn't affect another;
Show interest in applying independent events probability in real-life.
Learners toss a fair coin and a fair die at the same time and record outcomes.
Learners repeat the experiment several times.
Learners discuss that the outcome of the coin toss doesn't affect the outcome of the die roll (independence).
What makes events independent from each other?
-KLB Mathematics Grade 9 Textbook page 260
-Coins and dice
-Table for recording outcomes
-Chart showing examples of independent events
-Manila paper
-Colored markers
-KLB Mathematics Grade 9 Textbook page 261
-Calculator
-Chart showing multiplication rule
-Worksheets with problems
-Oral questions -Practical activity -Group discussions -Observation
7 4
Data Handling and Probability
Probability - Tree diagrams for single outcomes
Probability - Complex tree diagrams
By the end of the lesson, the learner should be able to:

Draw a probability tree diagram for a single outcome;
Represent probability situations using tree diagrams;
Value the use of tree diagrams in organizing probability information.
Learners write down possible outcomes when a fair coin is flipped once.
Learners find the total number of all outcomes and probability of each outcome.
Learners complete a tree diagram with possible outcomes and their probabilities.
How do tree diagrams help us understand probability situations?
-KLB Mathematics Grade 9 Textbook page 262
-Chart paper
-Ruler
-Worksheets with blank tree diagrams
-Chart showing completed tree diagrams
-Colored markers
-KLB Mathematics Grade 9 Textbook page 263
-Calculator
-Chart showing complex tree diagrams
-Worksheets with problems
-Oral questions -Practical activity -Group work assessment -Checklist
7 5
Data Handling and Probability
Probability - Complex tree diagrams
By the end of the lesson, the learner should be able to:

Your Name Comes Here


Download

Feedback