If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
1 | 1 |
MEASUREMENTS
|
Time, Distance and Speed - Working Out Acceleration in Real Life Situations
Time, Distance and Speed - Identifying Longitudes on the Globe |
By the end of the
lesson, the learner
should be able to:
-Define acceleration; -Calculate acceleration using the formula a = (v-u)/t; -Solve problems involving acceleration; -Develop interest in understanding acceleration in real-life situations. |
In groups, learners are guided to:
-Discuss the concept of acceleration; -Record initial velocity, final velocity, and time taken for various movements; -Calculate acceleration using the formula a = (v-u)/t; -Understand deceleration as negative acceleration; -Solve problems involving acceleration in real-life contexts; -Discuss and share results with other groups. |
How do we calculate acceleration?
|
-Mathematics learners book grade 9 page 130;
-Stopwatch/timer; -Scientific calculators; -Chart showing examples of acceleration calculations; -Examples of acceleration in real-life situations. -Mathematics learners book grade 9 page 131; -Globe; -World map showing longitudes; -Digital devices for research; -Charts showing the longitude system. |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
1 | 2 |
MEASUREMENTS
|
Time, Distance and Speed - Relating Longitudes to Time on the Globe
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes |
By the end of the
lesson, the learner
should be able to:
-Understand the relationship between longitudes and time; -Calculate the time difference between places on different longitudes; -Identify places with the same local time; -Appreciate the importance of longitudes in determining time. |
In groups, learners are guided to:
-Discuss how the earth rotates 360° in 24 hours (15° per hour); -Complete a table showing degrees of rotation for different time periods; -Identify pairs of points on a globe that share the same local time; -Understand that places on the same longitude have the same local time; -Discuss and share findings with other groups. |
How are longitudes related to time?
|
-Mathematics learners book grade 9 page 133;
-Globe; -World map showing time zones; -Digital devices for research; -Charts showing the relationship between longitudes and time. -Mathematics learners book grade 9 page 134; -Scientific calculators; -Charts showing examples of local time calculations. |
-Observation;
-Oral questions;
-Written exercises;
-Group presentations.
|
|
1 | 3 |
MEASUREMENTS
|
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes
|
By the end of the
lesson, the learner
should be able to:
-Calculate local time across the International Date Line; -Solve complex problems involving local time at different longitudes; -Apply knowledge of local time to real-life situations; -Appreciate the practical applications of understanding local time. |
In groups, learners are guided to:
-Review the calculation of local time at different longitudes; -Understand the International Date Line and its effect on time/date; -Calculate local time for places on opposite sides of the International Date Line; -Solve complex problems involving local time at different longitudes; -Discuss real-life applications such as international travel and communication; -Discuss and share results with other groups. |
How does the International Date Line affect time calculations?
|
-Mathematics learners book grade 9 page 136;
-Globe; -World map showing time zones and the International Date Line; -Scientific calculators; -Charts showing examples of local time calculations. |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
1 | 4 |
MEASUREMENTS
|
Time, Distance and Speed - Determining Local Time of Places on Different Longitudes
Money - Identifying Currencies Used in Different Countries |
By the end of the
lesson, the learner
should be able to:
-Apply knowledge of local time to solve various problems; -Convert between 12-hour and 24-hour time formats; -Solve real-world problems involving time zones; -Show genuine interest in understanding global time. |
In groups, learners are guided to:
-Review calculations of local time at different longitudes; -Convert between 12-hour (am/pm) and 24-hour time formats; -Solve problems involving flight times, international calls, and global events; -Use digital resources to explore current time in different parts of the world; -Discuss and share results with other groups. |
How do time zones affect international communication and travel?
|
-Mathematics learners book grade 9 page 137;
-Globe; -World map showing time zones; -Digital devices showing current time in different cities; -Scientific calculators. -Mathematics learners book grade 9 page 138; -Digital devices for research; -Pictures/samples of different currencies; -Manila paper or carton; -Charts showing currencies and their countries. |
-Observation;
-Oral questions;
-Written exercises;
-Project work on time zones.
|
|
1 | 5 |
MEASUREMENTS
|
Money - Converting Currency from One to Another in Real Life Situations
|
By the end of the
lesson, the learner
should be able to:
-Understand exchange rates; -Convert foreign currency to Kenyan currency; -Use exchange rate tables; -Appreciate the concept of currency exchange. |
In groups, learners are guided to:
-Study exchange rates of international currencies in a table; -Understand the concept of buying and selling rates; -Convert foreign currencies to Kenyan Shillings using the buying rate; -Solve problems involving currency conversion; -Use digital devices to compare exchange rates from different sources; -Discuss and share results with other groups. |
Why do we change currencies from one form to another?
|
-Mathematics learners book grade 9 page 141;
-Exchange rate tables from newspapers or online sources; -Scientific calculators; -Digital devices for checking current exchange rates; -Charts showing examples of currency conversions. -Mathematics learners book grade 9 page 142; |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
2 | 1 |
MEASUREMENTS
|
Money - Working Out Export Duties Charged on Goods
|
By the end of the
lesson, the learner
should be able to:
-Define export duty; -Calculate export duty on goods; -Understand the purpose of export duties; -Appreciate the role of export duties in international trade. |
In groups, learners are guided to:
-Use digital devices to search for the meaning of export duty; -Research the percentage of export duty on different goods in Kenya; -Calculate export duty on goods using the formula: Export Duty = Value of Goods × Duty Rate; -Solve problems involving export duties; -Discuss the purpose and impact of export duties; -Discuss and share findings with other groups. |
What are the types of taxes the government levy on its citizens?
|
-Mathematics learners book grade 9 page 143;
-Digital devices for research; -Scientific calculators; -Charts showing export duty rates; -Examples of export scenarios. |
-Observation;
-Oral questions;
-Written exercises;
-Research presentation.
|
|
2 | 2 |
MEASUREMENTS
|
Money - Working Out Import Duties Charged on Goods
Money - Working Out Excise Duty Charged on Goods |
By the end of the
lesson, the learner
should be able to:
-Define import duty; -Calculate import duty on goods; -Identify goods exempted from import duty; -Show interest in understanding import duties. |
In groups, learners are guided to:
-Use digital devices to search for the meaning of import duty; -Research the percentage of import duty on different goods and services; -Identify examples of goods exempted from import duty in Kenya; -Calculate import duty on goods using the formula: Import Duty = Customs Value × Duty Rate; -Solve problems involving import duties; -Discuss and share findings with other groups. |
What are import duties and why are they charged?
|
-Mathematics learners book grade 9 page 143;
-Digital devices for research; -Scientific calculators; -Charts showing import duty rates; -Examples of import scenarios. -Mathematics learners book grade 9 page 145; -Charts showing excise duty rates; -Examples of goods subject to excise duty. |
-Observation;
-Oral questions;
-Written exercises;
-Research presentation.
|
|
2 | 3 |
MEASUREMENTS
|
Money - Determining Value-Added Tax (VAT) Charged on Goods and Services
Approximations and Errors - Approximating Quantities in Measurements |
By the end of the
lesson, the learner
should be able to:
-Define Value Added Tax (VAT); -Identify goods and services that attract VAT; -Calculate VAT on goods and services; -Appreciate the role of VAT in government revenue collection. |
In groups, learners are guided to:
-Use digital devices or print media to search for information on VAT; -Research goods that attract VAT; -Research the percentage of VAT charged on goods and services; -Study receipts to identify VAT amounts; -Calculate VAT on various goods and services; -Discuss and share findings with other groups. |
How is VAT calculated and why is it charged?
|
-Mathematics learners book grade 9 page 145;
-Supermarket receipts showing VAT; -Digital devices for research; -Scientific calculators; -Charts showing VAT calculations. -Mathematics learners book grade 9 page 148; -Measuring tapes/rulers; -Various objects to measure; -Charts showing conventional and arbitrary units; -Open space for measuring with strides. |
-Observation;
-Oral questions;
-Written exercises;
-Analysis of receipts.
|
|
2 | 4 |
MEASUREMENTS
|
Approximations and Errors - Determining Errors Using Estimations and Actual Measurements
|
By the end of the
lesson, the learner
should be able to:
-Define error in measurements; -Determine errors by comparing estimated and actual measurements; -Calculate absolute errors in measurements; -Develop genuine interest in understanding measurement errors. |
In groups, learners are guided to:
-Estimate the measurements of various items in centimeters; -Use a ruler to find the actual measurements of the items; -Find the difference between the estimated and measured values; -Understand that error = measured value - estimated value; -Complete a table with estimated values, measured values, and errors; -Discuss and share findings with other groups. |
How do we determine errors in measurements?
|
-Mathematics learners book grade 9 page 149;
-Measuring tapes/rulers; -Various objects to measure; -Weighing scales/balances; -Scientific calculators. |
-Observation;
-Oral questions;
-Written exercises;
-Practical assessment.
|
|
2 | 5 |
MEASUREMENTS
Geometry |
Approximations and Errors - Determining Percentage Errors Using Actual Measurements
Similarity and Enlargement - Similar figures and properties |
By the end of the
lesson, the learner
should be able to:
-Define percentage error; -Calculate percentage error in measurements; -Interpret the meaning of percentage error; -Show interest in minimizing errors in measurements. |
In groups, learners are guided to:
-Review the concept of error in measurements; -Express error as a ratio of the actual value; -Convert the ratio to a percentage to find percentage error; -Calculate percentage error using the formula: Percentage Error = (Error/Actual Value) × 100%; -Solve problems involving percentage error; -Discuss and share findings with other groups. |
Why is percentage error more useful than absolute error?
|
-Mathematics learners book grade 9 page 151;
-Measuring tapes/rulers; -Various objects to measure; -Weighing scales/balances; -Scientific calculators. -KLB Mathematics Grade 9 Textbook page 203 -Ruler -Protractor -Cut-out shapes -Charts showing similar figures -Manila paper |
-Observation;
-Oral questions;
-Written exercises;
-Problem-solving assessment.
|
|
3 | 1 |
Geometry
|
Similarity and Enlargement - Identifying similar objects
Similarity and Enlargement - Drawing similar figures |
By the end of the
lesson, the learner
should be able to:
Identify similar objects in the environment; Determine if given figures are similar; Value the concept of similarity in everyday life. |
Learners collect and classify objects according to similarity.
Learners identify pairs of similar figures from given diagrams. Learners discuss real-life examples of similar objects and their properties. |
How do we recognize similar objects in our environment?
|
-KLB Mathematics Grade 9 Textbook page 204
-Ruler -Protractor -Various geometric objects -Charts with examples -Worksheets with diagrams -KLB Mathematics Grade 9 Textbook page 206 -Pair of compasses -Drawing paper -Calculator |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
3 | 2 |
Geometry
|
Similarity and Enlargement - Properties of enlargement
|
By the end of the
lesson, the learner
should be able to:
Determine properties of enlargement of different figures; Locate the center of enlargement and find scale factors; Value the application of enlargement in real-life situations. |
Learners trace diagrams showing an object and its enlarged image.
Learners draw lines through corresponding points to find where they intersect (center of enlargement). Learners find the ratios of corresponding lengths to determine the scale factor. |
How do we determine the center and scale factor of an enlargement?
|
-KLB Mathematics Grade 9 Textbook page 209
-Ruler -Tracing paper -Colored pencils -Grid paper -Charts showing enlargements -Diagrams for tracing |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
3 | 3 |
Geometry
|
Similarity and Enlargement - Negative scale factors
Similarity and Enlargement - Drawing images of objects |
By the end of the
lesson, the learner
should be able to:
Determine properties of enlargement with negative scale factors; Locate centers of enlargement with negative scale factors; Appreciate the concept of negative scale factors in enlargements. |
Learners trace diagrams showing an object and its image where the center of enlargement is between them.
Learners join corresponding points to locate the center of enlargement. Learners find the ratio of distances from the center to corresponding points and note that the image is on the opposite side of the object. |
What happens when an enlargement has a negative scale factor?
|
-KLB Mathematics Grade 9 Textbook page 211
-Ruler -Tracing paper -Grid paper -Colored pencils -Charts showing negative scale factor enlargements -Diagrams for tracing -KLB Mathematics Grade 9 Textbook page 214 -Charts showing steps of enlargement -Manila paper |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
3 | 4 |
Geometry
|
Similarity and Enlargement - Linear scale factor
Similarity and Enlargement - Using coordinates in enlargement |
By the end of the
lesson, the learner
should be able to:
Determine the linear scale factor of similar figures; Calculate unknown dimensions using linear scale factors; Value the application of linear scale factors in real-life problems. |
Learners consider similar cones and find the ratios of their corresponding dimensions.
Learners study similar triangles and calculate the linear scale factor. Learners use the scale factor to find unknown dimensions of similar figures. |
How do we use linear scale factors to calculate unknown dimensions of similar figures?
|
-KLB Mathematics Grade 9 Textbook page 216
-Ruler -Calculator -Similar objects of different sizes -Charts with examples -Worksheets -KLB Mathematics Grade 9 Textbook page 218 -Grid paper -Colored pencils -Charts with coordinate examples |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
3 | 5 |
Geometry
|
Similarity and Enlargement - Applications of similarity
|
By the end of the
lesson, the learner
should be able to:
Apply similarity concepts to solve real-life problems; Calculate heights and distances using similar triangles; Value the practical applications of similarity in everyday life. |
Learners solve problems involving similar triangles to find unknown heights and distances.
Learners discuss how similarity is used in fields such as architecture, photography, and engineering. Learners work on practical applications of similarity in the environment. |
How can we use similarity to solve real-life problems?
|
-KLB Mathematics Grade 9 Textbook page 219
-Ruler -Calculator -Drawing paper -Charts with real-life applications -Manila paper for presentations |
-Oral questions
-Problem-solving
-Written exercise
-Group presentation
|
|
4 | 1 |
Geometry
|
Trigonometry - Angles and sides of right-angled triangles
Trigonometry - Sine ratio |
By the end of the
lesson, the learner
should be able to:
Identify angles and sides of right-angled triangles in different situations; Distinguish between the hypotenuse, adjacent side, and opposite side; Appreciate the relationship between angles and sides in right-angled triangles. |
Learners draw right-angled triangles with acute angles and identify the longest side (hypotenuse).
Learners identify the side which together with the hypotenuse forms the angle θ (adjacent side). Learners identify the side facing the angle θ (opposite side). |
How do we identify different sides in a right-angled triangle?
|
-KLB Mathematics Grade 9 Textbook page 220
-Ruler -Protractor -Set square -Drawing paper -Charts with labeled triangles -Colored markers -KLB Mathematics Grade 9 Textbook page 222 -Calculator -Charts showing sine ratio -Manila paper |
-Oral questions
-Observation
-Written exercise
-Checklist
|
|
4 | 2 |
Geometry
|
Trigonometry - Cosine ratio
|
By the end of the
lesson, the learner
should be able to:
Identify cosine ratio from a right-angled triangle; Calculate cosine of angles in right-angled triangles; Enjoy solving problems involving cosine ratio. |
Learners draw triangles with specific angles and sides.
Learners calculate ratios of adjacent side to hypotenuse for different angles and discover the cosine ratio. Learners find the cosine of marked angles in various right-angled triangles. |
What is the cosine of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 223
-Ruler -Protractor -Calculator -Drawing paper -Charts showing cosine ratio -Worksheets |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
4 | 3 |
Geometry
|
Trigonometry - Tangent ratio
Trigonometry - Reading tables of sines |
By the end of the
lesson, the learner
should be able to:
Identify tangent ratio from a right-angled triangle; Calculate tangent of angles in right-angled triangles; Appreciate the importance of tangent ratio in problem-solving. |
Learners draw triangle ABC with specific angles and mark points on BC.
Learners draw perpendiculars from these points to AC and measure their lengths. Learners calculate ratios of opposite side to adjacent side for different angles and discover the tangent ratio. |
What is the tangent of an angle and how do we calculate it?
|
-KLB Mathematics Grade 9 Textbook page 225
-Ruler -Protractor -Calculator -Drawing paper -Charts showing tangent ratio -Manila paper -KLB Mathematics Grade 9 Textbook page 227 -Mathematical tables -Worksheets -Chart showing how to read tables -Sample exercises |
-Oral questions
-Practical activity
-Written exercise
-Checklist
|
|
4 | 4 |
Geometry
|
Trigonometry - Reading tables of cosines and tangents
Trigonometry - Using calculators for trigonometric ratios |
By the end of the
lesson, the learner
should be able to:
Read tables of cosines and tangents for acute angles; Find cosine and tangent values using mathematical tables; Enjoy using mathematical tables to find trigonometric ratios. |
Learners study parts of the tables of cosines and tangents.
Learners use the tables to find cosine and tangent values of specific angles. Learners find values of angles with decimal parts using the 'SUBTRACT' column for cosines and 'ADD' column for tangents. |
How do we use mathematical tables to find cosine and tangent values?
|
-KLB Mathematics Grade 9 Textbook page 229-231
-Mathematical tables -Calculator -Worksheets -Chart showing how to read tables -Sample exercises -KLB Mathematics Grade 9 Textbook page 233 -Scientific calculators -Chart showing calculator keys |
-Oral questions
-Practical activity
-Written exercise
-Observation
|
|
4 | 5 |
Geometry
|
Trigonometry - Calculating lengths using trigonometric ratios
|
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios to calculate lengths of right-angled triangles; Use sine, cosine, and tangent ratios to find unknown sides; Appreciate the application of trigonometry in solving real-life problems. |
Learners consider a right-angled triangle and find the trigonometric ratio appropriate for finding an unknown side.
Learners find the value of the ratio from tables or calculators and relate it to the expression to find the unknown side. Learners solve problems involving finding sides of right-angled triangles. |
How do we use trigonometric ratios to find unknown sides in right-angled triangles?
|
-KLB Mathematics Grade 9 Textbook page 234
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with examples -Worksheets |
-Oral questions
-Group work
-Written exercise
-Assessment rubrics
|
|
5 | 1 |
Geometry
|
Trigonometry - Calculating angles using trigonometric ratios
Trigonometry - Application in heights and distances |
By the end of the
lesson, the learner
should be able to:
Use trigonometric ratios to calculate angles in right-angled triangles; Apply inverse trigonometric functions to find angles; Enjoy solving problems involving trigonometric ratios. |
Learners consider right-angled triangles with known sides.
Learners calculate trigonometric ratios using the known sides and use tables or calculators to find the corresponding angles. Learners solve problems involving finding angles in right-angled triangles. |
How do we find unknown angles in right-angled triangles using trigonometric ratios?
|
-KLB Mathematics Grade 9 Textbook page 235
-Scientific calculators -Mathematical tables -Ruler -Drawing paper -Charts with examples -Worksheets -KLB Mathematics Grade 9 Textbook page 237 -Charts with real-life examples -Manila paper |
-Oral questions
-Group work
-Written exercise
-Observation
|
|
5 | 2 |
Geometry
|
Trigonometry - Application in navigation
Trigonometry - Review and mixed applications |
By the end of the
lesson, the learner
should be able to:
Apply trigonometric ratios in navigation problems; Calculate distances and bearings using trigonometry; Appreciate the importance of trigonometry in navigation. |
Learners solve problems involving finding distances between locations given bearings and distances from a reference point.
Learners calculate bearings between points using trigonometric ratios. Learners discuss how pilots, sailors, and navigators use trigonometry. |
How is trigonometry used in navigation and determining positions?
|
-KLB Mathematics Grade 9 Textbook page 238
-Scientific calculators -Mathematical tables -Ruler -Protractor -Maps -Charts with navigation examples -KLB Mathematics Grade 9 Textbook page 240 -Drawing paper -Past examination questions |
-Oral questions
-Problem-solving
-Written exercise
-Assessment rubrics
|
|
5 | 3 |
Data Handling and Probability
|
Data Interpretation - Appropriate class width
|
By the end of the
lesson, the learner
should be able to:
Determine appropriate class width for grouping data; Work with data to establish suitable class widths; Appreciate the importance of appropriate class widths in data representation. |
Learners work in groups to consider masses of 40 people in kilograms.
Learners find the difference between the smallest and highest mass (range). Learners group the masses in smaller groups with different class widths and identify the number of groups formed in each case. |
How do we determine an appropriate class width for a given set of data?
|
-KLB Mathematics Grade 9 Textbook page 244
-Calculator -Graph paper -Manila paper -Rulers -Colored markers |
-Oral questions
-Group presentations
-Written exercise
-Observation
|
|
5 | 4 |
Data Handling and Probability
|
Data Interpretation - Finding range and creating groups
Data Interpretation - Frequency distribution tables |
By the end of the
lesson, the learner
should be able to:
Calculate the range of a set of data; Divide data into suitable class intervals; Show interest in grouping data for better representation. |
Learners are presented with marks scored by 40 students in a mathematics test.
Learners find the range of the data. Learners complete a table using a class width of 10 and determine the number of classes formed. |
How does the range of data help us determine appropriate class intervals?
|
-KLB Mathematics Grade 9 Textbook page 245
-Calculator -Manila paper -Data sets -Chart with examples -Colored markers -KLB Mathematics Grade 9 Textbook page 247 -Chart paper -Ruler |
-Oral questions
-Written exercise
-Observation
-Group work assessment
|
|
5 | 5 |
Data Handling and Probability
|
Data Interpretation - Creating frequency tables with different class intervals
Data Interpretation - Modal class |
By the end of the
lesson, the learner
should be able to:
Construct frequency tables starting with different class intervals; Use tally marks to represent data in frequency tables; Appreciate the use of different class intervals in data representation. |
Learners construct a frequency table for given data starting from the class interval 60-64.
Learners use tally marks to count frequency of data in each class. Learners compare and discuss different frequency tables. |
How do we choose appropriate starting points for class intervals?
|
-KLB Mathematics Grade 9 Textbook page 247
-Calculator -Ruler -Graph paper -Manila paper -Worksheets with data -KLB Mathematics Grade 9 Textbook page 248 -Chart showing frequency distribution tables -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Observation
|
|
6 | 1 |
Data Handling and Probability
|
Data Interpretation - Mean of ungrouped data
|
By the end of the
lesson, the learner
should be able to:
Calculate the mean of ungrouped data in a frequency table; Multiply each value by its frequency and find their sum; Show interest in calculating mean in real-life situations. |
Learners consider the height, in metres, of 10 people recorded in a frequency distribution table.
Learners complete a table showing the product of height and frequency (fx). Learners find the sum of frequencies, sum of fx, and divide to find the mean. |
How do we calculate the mean of data presented in a frequency table?
|
-KLB Mathematics Grade 9 Textbook page 249
-Calculator -Chart showing frequency tables -Worksheets -Manila paper -Colored markers |
-Oral questions
-Written exercise
-Observation
-Assessment rubrics
|
|
6 | 2 |
Data Handling and Probability
|
Data Interpretation - Mean of grouped data
Data Interpretation - Mean calculation in real-life situations |
By the end of the
lesson, the learner
should be able to:
Calculate the mean of grouped data; Find the midpoint of class intervals and use in calculations; Value the importance of mean in summarizing data. |
Learners consider a frequency distribution table representing masses in kilograms of learners in a class.
Learners complete a table by finding midpoints of class intervals and calculating fx. Learners find the sum of frequencies, sum of fx, and divide to find the mean. |
How do we calculate the mean of grouped data?
|
-KLB Mathematics Grade 9 Textbook page 250
-Calculator -Graph paper -Manila paper -Chart with examples -Worksheets -KLB Mathematics Grade 9 Textbook page 251 -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Checklist
|
|
6 | 3 |
Data Handling and Probability
|
Data Interpretation - Median of grouped data
Data Interpretation - Calculating median using formula |
By the end of the
lesson, the learner
should be able to:
Determine the median of grouped data; Find cumulative frequencies to locate the median class; Value the importance of median in data interpretation. |
Learners consider the mass of 50 learners recorded in a table.
Learners complete the column for cumulative frequency. Learners find the sum of frequency, divide by 2, and identify the position of the median mass. |
How do we determine the median of grouped data?
|
-KLB Mathematics Grade 9 Textbook page 252
-Calculator -Chart showing cumulative frequency tables -Worksheets -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 253 -Graph paper -Chart showing median formula |
-Oral questions
-Written exercise
-Group presentations
-Observation
|
|
6 | 4 |
Data Handling and Probability
|
Data Interpretation - Median calculations in real-life situations
|
By the end of the
lesson, the learner
should be able to:
Calculate median in real-life data situations; Apply the median formula to various data sets; Appreciate the role of median in data interpretation. |
Learners are presented with data on number of nights spent by people in a table.
Learners complete the cumulative frequency column and determine the median class. Learners apply the median formula to calculate the median value. |
How is the median used to interpret real-life data?
|
-KLB Mathematics Grade 9 Textbook page 254
-Calculator -Chart with example calculations -Worksheets with real-life data -Manila paper -Colored markers |
-Oral questions
-Written exercise
-Group presentations
-Peer assessment
|
|
6 | 5 |
Data Handling and Probability
|
Probability - Equally likely outcomes
Probability - Range of probability |
By the end of the
lesson, the learner
should be able to:
Perform experiments involving equally likely outcomes; Record outcomes of chance experiments; Appreciate that some events have equal chances of occurring. |
Learners work in groups to flip a fair coin 20 times.
Learners record the number of times heads and tails come up. Learners divide the number of times heads or tails comes up by the total number of tosses to find probabilities. |
What makes events equally likely to occur?
|
-KLB Mathematics Grade 9 Textbook page 256
-Coins -Chart paper -Table for recording outcomes -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 257 -Dice -Chart showing probability scale (0-1) |
-Oral questions
-Practical activity
-Group work assessment
-Observation
|
|
7 | 1 |
Data Handling and Probability
|
Probability - Complementary events
Probability - Mutually exclusive events |
By the end of the
lesson, the learner
should be able to:
Calculate probability of complementary events; Understand that sum of probabilities of complementary events is 1; Show interest in applying complementary probability in real-life situations. |
Learners discuss examples of complementary events.
Learners solve problems where the probability of one event is given and they need to find the probability of its complement. Learners verify that the sum of probabilities of an event and its complement equals 1. |
How are complementary events related in terms of their probabilities?
|
-KLB Mathematics Grade 9 Textbook page 258
-Calculator -Chart showing complementary events -Worksheets with problems -Manila paper -Colored markers -Coins -Chart with examples of mutually exclusive events -Flashcards with different scenarios |
-Oral questions
-Written exercise
-Group work assessment
-Observation
|
|
7 | 2 |
Data Handling and Probability
|
Probability - Experiments with mutually exclusive events
|
By the end of the
lesson, the learner
should be able to:
Perform experiments of single chance involving mutually exclusive events; Calculate probability of mutually exclusive events; Value the application of mutually exclusive events in real-life. |
Learners toss a fair die several times and record the numbers that show up.
Learners solve problems involving mutually exclusive events like picking a pen of a specific color from a box. Learners find probabilities of individual events and their union. |
How do we calculate the probability of mutually exclusive events?
|
-KLB Mathematics Grade 9 Textbook page 259
-Dice -Colored objects in boxes -Calculator -Chart showing probability calculations -Worksheets with problems |
-Oral questions
-Practical activity
-Written exercise
-Assessment rubrics
|
|
7 | 3 |
Data Handling and Probability
|
Probability - Independent events
Probability - Calculating probabilities of independent events |
By the end of the
lesson, the learner
should be able to:
Perform experiments involving independent events; Understand that outcome of one event doesn't affect another; Show interest in applying independent events probability in real-life. |
Learners toss a fair coin and a fair die at the same time and record outcomes.
Learners repeat the experiment several times. Learners discuss that the outcome of the coin toss doesn't affect the outcome of the die roll (independence). |
What makes events independent from each other?
|
-KLB Mathematics Grade 9 Textbook page 260
-Coins and dice -Table for recording outcomes -Chart showing examples of independent events -Manila paper -Colored markers -KLB Mathematics Grade 9 Textbook page 261 -Calculator -Chart showing multiplication rule -Worksheets with problems |
-Oral questions
-Practical activity
-Group discussions
-Observation
|
|
7 | 4 |
Data Handling and Probability
|
Probability - Tree diagrams for single outcomes
Probability - Complex tree diagrams |
By the end of the
lesson, the learner
should be able to:
Draw a probability tree diagram for a single outcome; Represent probability situations using tree diagrams; Value the use of tree diagrams in organizing probability information. |
Learners write down possible outcomes when a fair coin is flipped once.
Learners find the total number of all outcomes and probability of each outcome. Learners complete a tree diagram with possible outcomes and their probabilities. |
How do tree diagrams help us understand probability situations?
|
-KLB Mathematics Grade 9 Textbook page 262
-Chart paper -Ruler -Worksheets with blank tree diagrams -Chart showing completed tree diagrams -Colored markers -KLB Mathematics Grade 9 Textbook page 263 -Calculator -Chart showing complex tree diagrams -Worksheets with problems |
-Oral questions
-Practical activity
-Group work assessment
-Checklist
|
|
7 | 5 |
Data Handling and Probability
|
Probability - Complex tree diagrams
|
By the end of the
lesson, the learner
should be able to:
|
|
|
|
|
Your Name Comes Here