If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
Matrices and Transformation
|
Matrices of Transformation
Identifying Common Transformation Matrices |
By the end of the
lesson, the learner
should be able to:
-Define transformation and identify types -Recognize that matrices can represent transformations -Apply 2×2 matrices to position vectors -Relate matrix operations to geometric transformations |
-Review transformation concepts from Form 2 -Demonstrate matrix multiplication using position vectors -Plot objects and images on coordinate plane -Practice identifying transformations from images |
Exercise books
-Manila paper -Ruler -Pencils -String |
KLB Secondary Mathematics Form 4, Pages 1-5
|
|
1 | 2 |
Matrices and Transformation
|
Finding the Matrix of a Transformation
Using the Unit Square Method Successive Transformations Matrix Multiplication for Combined Transformations Single Matrix for Successive Transformations Inverse of a Transformation |
By the end of the
lesson, the learner
should be able to:
-Determine the matrix representing a given transformation -Use coordinate geometry to find transformation matrices -Apply algebraic methods to find matrix elements -Verify transformation matrices using test points |
-Work through algebraic method of finding matrices -Use simultaneous equations to solve for matrix elements -Practice with different types of transformations -Verify results by applying matrix to test objects |
Exercise books
-Manila paper -Ruler -Chalk/markers -String -Coloured pencils |
KLB Secondary Mathematics Form 4, Pages 6-16
|
|
1 | 3 |
Matrices and Transformation
|
Properties of Inverse Transformations
Area Scale Factor and Determinant Shear Transformations |
By the end of the
lesson, the learner
should be able to:
-Calculate determinants of 2×2 matrices -Use determinant formula for matrix inverses -Identify when inverse matrices exist -Apply inverse matrix formula efficiently |
-Practice determinant calculations on chalkboard -Use formula: A⁻¹ = (1/det A) × adj A -Identify singular matrices (det = 0) -Solve systems using inverse matrices |
Exercise books
-Manila paper -Ruler -Chalk/markers det A -Cardboard pieces |
KLB Secondary Mathematics Form 4, Pages 24-26
|
|
1 | 4 |
Matrices and Transformation
|
Stretch Transformations
Combined Shear and Stretch Problems |
By the end of the
lesson, the learner
should be able to:
-Define stretch transformation and scale factors -Distinguish between one-way and two-way stretches -Construct matrices for stretch transformations -Apply stretch transformations to solve problems |
-Demonstrate stretch using rubber bands and paper -Practice with x-axis and y-axis invariant stretches -Construct stretch matrices systematically -Compare stretches with enlargements |
Exercise books
-Rubber bands -Manila paper -Ruler -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 28-34
|
|
1 | 5 |
Matrices and Transformation
Statistics II Statistics II |
Isometric and Non-isometric Transformations
Introduction to Advanced Statistics Working Mean Concept |
By the end of the
lesson, the learner
should be able to:
-Distinguish between isometric and non-isometric transformations -Classify transformations based on shape and size preservation -Identify isometric transformations from matrices -Apply classification to solve problems |
-Compare congruent and non-congruent images using cutouts -Classify transformations systematically -Practice identification from matrices -Discuss real-world applications of each type |
Exercise books
-Paper cutouts -Manila paper -Ruler -Real data examples -Chalk/markers -Sample datasets |
KLB Secondary Mathematics Form 4, Pages 35-38
|
|
2 | 1 |
Statistics II
|
Mean Using Working Mean - Simple Data
Mean Using Working Mean - Frequency Tables Mean for Grouped Data Using Working Mean |
By the end of the
lesson, the learner
should be able to:
-Calculate mean using working mean for ungrouped data -Apply the formula: mean = working mean + mean of deviations -Verify results using direct calculation method -Solve problems with whole numbers |
-Work through step-by-step examples on chalkboard -Practice with student marks and heights data -Verify answers using traditional method -Individual practice with guided support |
Exercise books
-Manila paper -Student data -Chalk/markers -Community data -Real datasets |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
2 | 2 |
Statistics II
|
Advanced Working Mean Techniques
Introduction to Quartiles, Deciles, Percentiles |
By the end of the
lesson, the learner
should be able to:
-Apply coding techniques with working mean -Divide by class width to simplify further -Use transformation methods efficiently -Solve complex grouped data problems |
-Demonstrate coding method on chalkboard -Show how dividing by class width helps -Practice reverse calculations to get original mean -Work with economic data from Kenya |
Exercise books
-Manila paper -Economic data -Chalk/markers -Student height data -Measuring tape |
KLB Secondary Mathematics Form 4, Pages 42-48
|
|
2 | 3 |
Statistics II
|
Calculating Quartiles for Ungrouped Data
Quartiles for Grouped Data Deciles and Percentiles Calculations |
By the end of the
lesson, the learner
should be able to:
-Find lower quartile, median, upper quartile for raw data -Apply the position formulas correctly -Arrange data in ascending order systematically -Interpret quartile values in context |
-Practice with test scores from the class -Arrange data systematically on chalkboard -Calculate Q1, Q2, Q3 step by step -Students work with their own datasets |
Exercise books
-Manila paper -Test score data -Chalk/markers -Grade data -Performance data |
KLB Secondary Mathematics Form 4, Pages 49-52
|
|
2 | 4 |
Statistics II
|
Introduction to Cumulative Frequency
Drawing Cumulative Frequency Curves (Ogives) Reading Values from Ogives |
By the end of the
lesson, the learner
should be able to:
-Construct cumulative frequency tables -Understand "less than" cumulative frequencies -Plot cumulative frequency against class boundaries -Identify the characteristic S-shape of ogives |
-Create cumulative frequency table with class data -Plot points on manila paper grid -Join points to form smooth curve -Discuss properties of ogive curves |
Exercise books
-Manila paper -Ruler -Class data -Pencils -Completed ogives |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
2 | 5 |
Statistics II
|
Applications of Ogives
Introduction to Measures of Dispersion |
By the end of the
lesson, the learner
should be able to:
-Use ogives to solve real-world problems -Find number of values above/below certain points -Calculate percentage of data in given ranges -Compare different datasets using ogives |
-Solve problems about pass rates in examinations -Find how many students scored above average -Calculate percentages for different grade ranges -Use agricultural production data for analysis |
Exercise books
-Manila paper -Real problem datasets -Ruler -Comparative datasets -Chalk/markers |
KLB Secondary Mathematics Form 4, Pages 52-60
|
|
3 | 1 |
Statistics II
|
Range and Interquartile Range
Mean Absolute Deviation Introduction to Variance |
By the end of the
lesson, the learner
should be able to:
-Calculate range for different datasets -Find interquartile range (Q3 - Q1) -Calculate quartile deviation (semi-interquartile range) -Compare advantages and limitations of each measure |
-Calculate range for student heights in class -Find IQR for the same data -Discuss effect of outliers on range -Compare IQR stability with range |
Exercise books
-Manila paper -Student data -Measuring tape -Test score data -Chalk/markers -Simple datasets |
KLB Secondary Mathematics Form 4, Pages 60-65
|
|
3 | 2 |
Statistics II
|
Variance Using Alternative Formula
Standard Deviation Calculations Standard Deviation for Grouped Data |
By the end of the
lesson, the learner
should be able to:
-Apply the formula: σ² = (Σx²/n) - x̄² -Use alternative variance formula efficiently -Compare computational methods -Solve variance problems for frequency data |
-Demonstrate both variance formulas -Show computational advantages of alternative formula -Practice with frequency tables -Students choose efficient method |
Exercise books
-Manila paper -Frequency data -Chalk/markers -Exam score data -Agricultural data |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
3 | 3 |
Statistics II
Loci |
Advanced Standard Deviation Techniques
Introduction to Loci |
By the end of the
lesson, the learner
should be able to:
-Apply transformation properties of standard deviation -Use coding with class width division -Solve problems with multiple transformations -Verify results using different methods |
-Demonstrate coding transformations -Show how SD changes with data transformations -Practice reverse calculations -Verify using alternative methods |
Exercise books
-Manila paper -Transformation examples -Chalk/markers -String |
KLB Secondary Mathematics Form 4, Pages 65-70
|
|
3 | 4 |
Loci
|
Basic Locus Concepts and Laws
Perpendicular Bisector Locus Properties and Applications of Perpendicular Bisector |
By the end of the
lesson, the learner
should be able to:
-Understand that loci follow specific laws or conditions -Identify the laws governing different types of movement -Distinguish between 2D and 3D loci -Apply locus concepts to simple problems |
-Physical demonstrations with moving objects -Students track movement of classroom door -Identify laws governing pendulum movement -Practice stating locus laws clearly |
Exercise books
-Manila paper -String -Real objects -Compass -Ruler |
KLB Secondary Mathematics Form 4, Pages 73-75
|
|
3 | 5 |
Loci
|
Locus of Points at Fixed Distance from a Point
Locus of Points at Fixed Distance from a Line Angle Bisector Locus |
By the end of the
lesson, the learner
should be able to:
-Define circle as locus of points at fixed distance from center -Construct circles with given radius using compass -Understand sphere as 3D locus from fixed point -Solve problems involving circular loci |
-Construct circles of different radii -Demonstrate with string of fixed length -Discuss radar coverage, radio signal range -Students create circles with various measurements |
Exercise books
-Manila paper -Compass -String -Ruler -Set square -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
4 | 1 |
Loci
|
Properties and Applications of Angle Bisector
Constant Angle Locus |
By the end of the
lesson, the learner
should be able to:
-Understand relationship between angle bisectors in triangles -Apply angle bisector theorem -Solve problems involving inscribed circles -Use angle bisectors in geometric constructions |
-Construct inscribed circle using angle bisectors -Apply angle bisector theorem to solve problems -Find external angle bisectors -Solve practical surveying problems |
Exercise books
-Manila paper -Compass -Ruler -Protractor |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
4 | 2 |
Loci
|
Advanced Constant Angle Constructions
Introduction to Intersecting Loci Intersecting Circles and Lines |
By the end of the
lesson, the learner
should be able to:
-Construct constant angle loci for various angles -Find centers of constant angle arcs -Solve complex constant angle problems -Apply to geometric theorem proving |
-Find centers for 60°, 90°, 120° angle loci -Construct major and minor arcs -Solve problems involving multiple angle constraints -Verify constructions using measurement |
Exercise books
-Manila paper -Compass -Protractor -Ruler |
KLB Secondary Mathematics Form 4, Pages 75-82
|
|
4 | 3 |
Loci
|
Triangle Centers Using Intersecting Loci
Complex Intersecting Loci Problems Introduction to Loci of Inequalities |
By the end of the
lesson, the learner
should be able to:
-Find circumcenter using perpendicular bisector intersections -Locate incenter using angle bisector intersections -Determine centroid and orthocenter -Apply triangle centers to solve problems |
-Construct all four triangle centers -Compare properties of different triangle centers -Use triangle centers in geometric proofs -Solve problems involving triangle center properties |
Exercise books
-Manila paper -Compass -Ruler -Real-world scenarios -Colored pencils |
KLB Secondary Mathematics Form 4, Pages 83-89
|
|
4 | 4 |
Loci
|
Distance Inequality Loci
Combined Inequality Loci |
By the end of the
lesson, the learner
should be able to:
-Represent distance inequalities graphically -Solve problems with "less than" and "greater than" distances -Find regions satisfying distance constraints -Apply to safety zone problems |
-Shade regions inside and outside circles -Solve exclusion zone problems -Apply to communication range problems -Practice with multiple distance constraints |
Exercise books
-Manila paper -Compass -Colored pencils -Ruler |
KLB Secondary Mathematics Form 4, Pages 89-92
|
|
4 | 5 |
Loci
|
Advanced Inequality Applications
Introduction to Loci Involving Chords Chord-Based Constructions Advanced Chord Problems Integration of All Loci Types |
By the end of the
lesson, the learner
should be able to:
-Apply inequality loci to linear programming introduction -Solve real-world optimization problems -Find maximum and minimum values in regions -Use graphical methods for decision making |
-Solve simple linear programming problems -Find optimal points in feasible regions -Apply to business and farming scenarios -Practice identifying corner points |
Exercise books
-Manila paper -Ruler -Real problem data -Compass |
KLB Secondary Mathematics Form 4, Pages 89-92
|
Your Name Comes Here