If this scheme pleases you, click here to download.
WK | LSN | STRAND | SUB-STRAND | LESSON LEARNING OUTCOMES | LEARNING EXPERIENCES | KEY INQUIRY QUESTIONS | LEARNING RESOURCES | ASSESSMENT METHODS | REFLECTION |
---|---|---|---|---|---|---|---|---|---|
2 | 1 |
Force and Energy
|
Waves - Meaning of waves
|
By the end of the
lesson, the learner
should be able to:
- Explain the meaning of waves in science - Describe waves as a transmission of disturbance that carries energy - Show interest in understanding wave phenomena in nature |
- Read the story about John and ripples in the dam
- Discuss what happens when an object is dropped in still water - Observe the movement of water waves and how they transport energy without moving matter |
How are waves applied in our day to day life?
|
- Mentor Integrated Science (pg. 166)
- Basin with water - Small objects to drop in water - Digital resources |
- Observation
- Oral questions
- Written assignments
|
|
2 | 2 |
Force and Energy
|
Waves - Generating waves in nature
|
By the end of the
lesson, the learner
should be able to:
- Describe how to generate different types of waves - Differentiate between mechanical and electromagnetic waves - Appreciate the presence of waves in everyday phenomena |
- Demonstrate generation of waves using a rope
- Generate water waves in a basin - Observe how sound waves are generated using a speaker - Discuss the difference between mechanical and electromagnetic waves |
How are different types of waves generated in nature?
|
- Mentor Integrated Science (pg. 167)
- Rope - Basin with water - Speakers - Rice or sand |
- Observation
- Practical assessment
- Written reports
|
|
2 | 3 |
Force and Energy
|
Waves - Generating waves in nature
|
By the end of the
lesson, the learner
should be able to:
- Describe how to generate different types of waves - Differentiate between mechanical and electromagnetic waves - Appreciate the presence of waves in everyday phenomena |
- Demonstrate generation of waves using a rope
- Generate water waves in a basin - Observe how sound waves are generated using a speaker - Discuss the difference between mechanical and electromagnetic waves |
How are different types of waves generated in nature?
|
- Mentor Integrated Science (pg. 167)
- Rope - Basin with water - Speakers - Rice or sand |
- Observation
- Practical assessment
- Written reports
|
|
2 | 4 |
Force and Energy
|
Waves - Transverse and longitudinal waves
|
By the end of the
lesson, the learner
should be able to:
- Differentiate between transverse and longitudinal waves - Demonstrate the generation of both types of waves using a slinky spring - Show interest in classifying waves based on particle movement |
- Use a slinky spring to demonstrate transverse waves (moving left to right)
- Use a slinky spring to demonstrate longitudinal waves (moving to-and-fro) - Compare the motion of particles in both types of waves - Observe and record the differences between these wave types |
What is the difference between transverse and longitudinal waves?
|
- Mentor Integrated Science (pg. 169)
- Slinky springs - Cloth pieces for marking - Digital resources showing wave motion |
- Observation
- Practical assessment
- Drawings and diagrams
- Written reports
|
|
2 | 5 |
Force and Energy
|
Waves - Classifying waves
|
By the end of the
lesson, the learner
should be able to:
- Classify various waves into transverse and longitudinal categories - Give examples of transverse and longitudinal waves in nature - Value the importance of classification in scientific study |
- Study different wave examples provided in the textbook
- Classify the waves into transverse and longitudinal categories - Research and identify real-world examples of both types of waves - Create a classification chart of common waves |
How are waves classified based on particle movement?
|
- Mentor Integrated Science (pg. 171)
- Digital resources - Charts showing different wave types - Wave demonstration equipment |
- Observation
- Classification exercises
- Oral presentations
- Written assignments
|
|
3 | 1 |
Force and Energy
|
Waves - Amplitude and wavelength
|
By the end of the
lesson, the learner
should be able to:
- Define amplitude and wavelength of waves - Identify these parameters on wave diagrams - Appreciate the importance of these measurements in wave description |
- Study diagrams of transverse and longitudinal waves
- Discuss the meaning of amplitude and wavelength - Identify amplitude and wavelength on various wave diagrams - Measure these parameters on drawn wave patterns |
How are amplitude and wavelength measured in different types of waves?
|
- Mentor Integrated Science (pg. 172)
- Wave diagrams - Rulers - Graph paper - Digital simulations |
- Observation
- Practical measurements
- Diagram labeling
- Written assignments
|
|
3 | 2 |
Force and Energy
|
Waves - Amplitude and wavelength
|
By the end of the
lesson, the learner
should be able to:
- Define amplitude and wavelength of waves - Identify these parameters on wave diagrams - Appreciate the importance of these measurements in wave description |
- Study diagrams of transverse and longitudinal waves
- Discuss the meaning of amplitude and wavelength - Identify amplitude and wavelength on various wave diagrams - Measure these parameters on drawn wave patterns |
How are amplitude and wavelength measured in different types of waves?
|
- Mentor Integrated Science (pg. 172)
- Wave diagrams - Rulers - Graph paper - Digital simulations |
- Observation
- Practical measurements
- Diagram labeling
- Written assignments
|
|
3 | 3 |
Force and Energy
|
Waves - Frequency and period
|
By the end of the
lesson, the learner
should be able to:
- Define frequency and period of waves - Describe the relationship between frequency and period - Show interest in quantitative aspects of wave motion |
- Search for the meaning of frequency and period using digital or print resources
- Discuss the motion of a mass on a string to illustrate oscillation - Create displacement-time graphs for oscillating objects - Establish the relationship between frequency and period |
What is the relationship between frequency and period in wave motion?
|
- Mentor Integrated Science (pg. 173)
- Digital resources - String and masses - Stopwatches - Graph paper |
- Observation
- Practical assessment
- Graph analysis
- Written assignments
|
|
3 | 4 |
Force and Energy
|
Waves - Practical: Period of waves
|
By the end of the
lesson, the learner
should be able to:
- Determine the period of oscillation experimentally - Calculate frequency from period measurements - Value precision and accuracy in scientific measurements |
- Set up an experiment with a mass on a string
- Time multiple oscillations and calculate average period - Calculate frequency from period measurements - Record and analyze results |
How is the period of oscillation measured experimentally?
|
- Mentor Integrated Science (pg. 175)
- Stands with clamps - Strings - Masses - Stopwatches |
- Observation
- Practical assessment
- Data analysis
- Written reports
|
|
3 | 5 |
Force and Energy
|
Waves - Practical: Period of waves
|
By the end of the
lesson, the learner
should be able to:
- Determine the period of oscillation experimentally - Calculate frequency from period measurements - Value precision and accuracy in scientific measurements |
- Set up an experiment with a mass on a string
- Time multiple oscillations and calculate average period - Calculate frequency from period measurements - Record and analyze results |
How is the period of oscillation measured experimentally?
|
- Mentor Integrated Science (pg. 175)
- Stands with clamps - Strings - Masses - Stopwatches |
- Observation
- Practical assessment
- Data analysis
- Written reports
|
|
4 | 1 |
Force and Energy
|
Waves - Wave speed
|
By the end of the
lesson, the learner
should be able to:
- Explain how to determine the speed of a wave - Apply the wave speed equation v = fλ - Show interest in mathematical relationships in wave phenomena |
- Discuss how to calculate wave speed using the distance-time method
- Introduce the wave equation speed = wavelength × frequency - Solve example problems involving wave speed calculations - Perform calculations with different wave parameters |
How is the speed of a wave determined?
|
- Mentor Integrated Science (pg. 176)
- Calculators - Wave speed problems - Digital resources - Wave demonstration equipment |
- Observation
- Problem-solving exercises
- Mathematical calculations
- Written assignments
|
|
4 | 2 |
Force and Energy
|
Waves - Phase of waves
|
By the end of the
lesson, the learner
should be able to:
- Explain the concept of phase in wave motion - Differentiate between in-phase and out-of-phase oscillations - Appreciate the mathematical precision in describing wave relationships |
- Conduct experiments with identical pendulums oscillating in phase
- Observe pendulums with same frequency but different amplitudes - Compare pendulums oscillating in opposite directions - Create and analyze displacement-time graphs for different phase relationships |
What determines whether waves are in phase or out of phase?
|
- Mentor Integrated Science (pg. 178)
- Stands with clamps - Strings and identical masses - Stopwatches - Graph paper |
- Observation
- Practical assessment
- Graph interpretation
- Written reports
|
|
4 | 3 |
Force and Energy
|
Waves - Phase of waves
|
By the end of the
lesson, the learner
should be able to:
- Explain the concept of phase in wave motion - Differentiate between in-phase and out-of-phase oscillations - Appreciate the mathematical precision in describing wave relationships |
- Conduct experiments with identical pendulums oscillating in phase
- Observe pendulums with same frequency but different amplitudes - Compare pendulums oscillating in opposite directions - Create and analyze displacement-time graphs for different phase relationships |
What determines whether waves are in phase or out of phase?
|
- Mentor Integrated Science (pg. 178)
- Stands with clamps - Strings and identical masses - Stopwatches - Graph paper |
- Observation
- Practical assessment
- Graph interpretation
- Written reports
|
|
4 | 4 |
Force and Energy
|
Waves - Oscillation in phase
|
By the end of the
lesson, the learner
should be able to:
- Set up pendulums oscillating in phase - Compare the displacement-time graphs of in-phase oscillations - Show curiosity in investigating wave phenomena |
- Set up identical pendulums oscillating in phase
- Record period and create displacement-time graphs - Analyze the characteristics of in-phase oscillations - Compare theoretical and experimental results |
What are the characteristics of oscillations that are in phase?
|
- Mentor Integrated Science (pg. 179)
- Pendulum apparatus - Stopwatches - Measuring equipment - Graph paper |
- Observation
- Practical assessment
- Graph construction and analysis
- Written reports
|
|
4 | 5 |
Force and Energy
|
Waves - Oscillation out of phase
|
By the end of the
lesson, the learner
should be able to:
- Set up pendulums oscillating out of phase - Compare the displacement-time graphs of out-of-phase oscillations - Value the mathematical description of wave phenomena |
- Set up identical pendulums oscillating out of phase
- Record and compare the motion patterns - Create displacement-time graphs for out-of-phase oscillations - Analyze the phase difference between oscillations |
What are the characteristics of oscillations that are out of phase?
|
- Mentor Integrated Science (pg. 181)
- Pendulum apparatus - Stopwatches - Measuring equipment - Graph paper |
- Observation
- Practical assessment
- Graph construction and analysis
- Written reports
|
|
5 | 1 |
Force and Energy
|
Waves - Characteristics of waves: straight-line motion
|
By the end of the
lesson, the learner
should be able to:
- Identify parts of a ripple tank - Demonstrate that waves travel in straight lines - Show interest in systematic investigation of wave properties |
- Identify parts of a ripple tank
- Set up a ripple tank to demonstrate straight-line motion of waves - Observe and trace wave fronts on paper - Analyze the direction of wave propagation |
How do we demonstrate that waves travel in straight lines?
|
- Mentor Integrated Science (pg. 183)
- Ripple tank - Water - Paper for tracing - Rulers |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
|
5 | 2 |
Force and Energy
|
Waves - Characteristics of waves: straight-line motion
|
By the end of the
lesson, the learner
should be able to:
- Identify parts of a ripple tank - Demonstrate that waves travel in straight lines - Show interest in systematic investigation of wave properties |
- Identify parts of a ripple tank
- Set up a ripple tank to demonstrate straight-line motion of waves - Observe and trace wave fronts on paper - Analyze the direction of wave propagation |
How do we demonstrate that waves travel in straight lines?
|
- Mentor Integrated Science (pg. 183)
- Ripple tank - Water - Paper for tracing - Rulers |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
|
5 | 3 |
Force and Energy
|
Waves - Characteristics of waves: reflection
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate reflection of waves in a ripple tank - Verify that waves obey the laws of reflection - Appreciate that various wave types follow similar behavior patterns |
- Set up a ripple tank with barriers to demonstrate wave reflection
- Observe reflection patterns with barriers at different angles - Compare the incident and reflected waves - Verify the laws of reflection for water waves |
How are waves reflected at barriers?
|
- Mentor Integrated Science (pg. 184)
- Ripple tank - Water - Metal strips as reflectors - Paper for tracing wave patterns |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
|
5 | 4 |
Force and Energy
|
Waves - Characteristics of waves: bending
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate bending (refraction) of waves in a ripple tank - Explain how wave speed changes with medium depth - Show interest in how waves interact with different media |
- Set up a ripple tank with shallow and deep regions
- Generate waves and observe their behavior at the boundary - Measure and compare wavelengths in different depth regions - Relate wavelength changes to speed changes |
How do waves bend when moving between different media?
|
- Mentor Integrated Science (pg. 185)
- Ripple tank - Water - Glass plate to create shallow region - Paper for tracing wave patterns |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
|
5 | 5 |
Force and Energy
|
Waves - Characteristics of waves: diffraction
|
By the end of the
lesson, the learner
should be able to:
- Demonstrate diffraction of waves around obstacles - Explain how gap size affects diffraction patterns - Appreciate diffraction as a fundamental wave property |
- Set up a ripple tank with barriers having gaps of different sizes
- Generate waves and observe their behavior passing through gaps - Compare diffraction patterns with different gap widths - Relate observations to wave theory |
How do waves behave when passing through gaps or around obstacles?
|
- Mentor Integrated Science (pg. 186)
- Ripple tank - Water - Metal barriers with adjustable gaps - Paper for tracing wave patterns |
- Observation
- Practical assessment
- Drawing analysis
- Written reports
|
|
6 | 1 |
Force and Energy
|
Waves - Remote sensing in relation to waves
|
By the end of the
lesson, the learner
should be able to:
- Describe remote sensing process - Explain the role of waves in remote sensing - Show interest in technological applications of wave properties |
- Search for information about remote sensing using digital resources
- Discuss the remote sensing process and how waves are used - Identify where absorption and reflection occur in remote sensing - Prepare and present findings on remote sensing |
How is remote sensing related to waves?
|
- Mentor Integrated Science (pg. 187)
- Digital resources - Diagrams of remote sensing processes - Video clips on remote sensing |
- Observation
- Research reports
- Oral presentations
- Written assignments
|
|
6 | 2 |
Force and Energy
|
Waves - Remote sensing in relation to waves
|
By the end of the
lesson, the learner
should be able to:
- Describe remote sensing process - Explain the role of waves in remote sensing - Show interest in technological applications of wave properties |
- Search for information about remote sensing using digital resources
- Discuss the remote sensing process and how waves are used - Identify where absorption and reflection occur in remote sensing - Prepare and present findings on remote sensing |
How is remote sensing related to waves?
|
- Mentor Integrated Science (pg. 187)
- Digital resources - Diagrams of remote sensing processes - Video clips on remote sensing |
- Observation
- Research reports
- Oral presentations
- Written assignments
|
|
6 | 3 |
Force and Energy
|
Waves - Transmission, absorption and reflection in remote sensing
|
By the end of the
lesson, the learner
should be able to:
- Explain transmission, absorption and reflection of waves in remote sensing - Describe how wave interactions affect remote sensing data - Value the role of wave properties in modern technology |
- Study the diagram representing the remote sensing process
- Discuss each step involved in remote sensing - Analyze how absorption and reflection differ during remote sensing - Relate these processes to wave properties |
How do transmission, absorption and reflection of waves affect remote sensing?
|
- Mentor Integrated Science (pg. 188)
- Digital resources - Diagrams of remote sensing processes - Examples of remote sensing data |
- Observation
- Diagram analysis
- Group discussions
- Written assignments
|
|
6 | 4 |
Force and Energy
|
Waves - Transmission, absorption and reflection in remote sensing
|
By the end of the
lesson, the learner
should be able to:
- Explain transmission, absorption and reflection of waves in remote sensing - Describe how wave interactions affect remote sensing data - Value the role of wave properties in modern technology |
- Study the diagram representing the remote sensing process
- Discuss each step involved in remote sensing - Analyze how absorption and reflection differ during remote sensing - Relate these processes to wave properties |
How do transmission, absorption and reflection of waves affect remote sensing?
|
- Mentor Integrated Science (pg. 188)
- Digital resources - Diagrams of remote sensing processes - Examples of remote sensing data |
- Observation
- Diagram analysis
- Group discussions
- Written assignments
|
|
6 | 5 |
Force and Energy
|
Waves - Applications of waves in everyday life
|
By the end of the
lesson, the learner
should be able to:
- Identify various applications of waves in everyday life - Explain how wave properties are utilized in different technologies - Appreciate the importance of waves in modern society |
- Research applications of waves in everyday life (communication, medical imaging, entertainment)
- Discuss how specific wave properties are utilized in different applications - Present findings on wave applications - Relate wave theory to practical applications |
What are the practical applications of waves in our everyday life?
|
- Mentor Integrated Science (pg. 190)
- Digital resources - Examples of wave-based technologies - Video clips on wave applications |
- Observation
- Research reports
- Oral presentations
- Written assignments
|
Your Name Comes Here