If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
RECEPTION, RESPONSE AND CO-ORDINATION
|
Vision, Rods, Cones and Image Formation
|
By the end of the
lesson, the learner
should be able to:
Explain functions of rods and cones. Describe image formation in the eye. Understand color vision and visual acuity. Explain binocular and stereoscopic vision. |
Exposition on photoreceptor functions and differences. Discussion on color vision mechanism. Explanation of image formation process. Practical activities on visual perception and blind spot demonstration.
|
Textbook, chalkboard, chalk, white paper, pencils for blind spot experiment
|
KLB Secondary Biology Form 4, Pages 105-109
|
|
2 | 2 |
RECEPTION, RESPONSE AND CO-ORDINATION
|
Integration and Coordination Systems Review
Practical Applications and Assessment |
By the end of the
lesson, the learner
should be able to:
Compare plant and animal coordination systems. Integrate nervous, endocrine, and sensory systems. Apply knowledge to solve coordination problems. |
Comprehensive review of all coordination systems. Comparison charts of different response types. Problem-solving exercises on coordination scenarios. Q&A sessions covering all topics. Preparation for assessments.
|
Textbook, chalkboard, chalk, exercise books, review materials
Textbook, assessment materials, local case studies, exercise books |
KLB Secondary Biology Form 4, Pages 78-116
|
|
2 | 3-4 |
SUPPORT AND MOVEMENT
|
Importance of Support and Movement; Plant Support Strategies
Tissue Arrangement in Monocot and Dicot Stems |
By the end of the
lesson, the learner
should be able to:
Explain the necessity for support in plants and animals. Describe importance of movement in organisms. Identify different support mechanisms in plants. Explain role of turgor pressure and alternative support methods. Describe arrangement of tissues in monocotyledonous and dicotyledonous stems. Compare tissue arrangements between monocots and dicots. Identify supporting tissues and their distribution. |
Brainstorming on why organisms need support. Discussion on consequences of lack of support. Observation of local plants showing different support strategies. Practical experiment on wilting in herbaceous vs woody plants. Analysis of climbing plants and their support adaptations.
Examination of fresh monocot and dicot stem cross-sections. Drawing and labeling tissue arrangements on chalkboard. Practical observation of vascular bundle patterns. Comparison of scattered vs ring arrangements. Discussion on supporting tissue distribution. |
Textbook, chalkboard, chalk, local plant specimens, herbaceous and woody plants for wilting experiment
Textbook, chalkboard, chalk, fresh monocot stems (maize, sugarcane), fresh dicot stems (bean plants), razor blades, hand lenses |
KLB Secondary Biology Form 4, Pages 120-121, 125-126
KLB Secondary Biology Form 4, Pages 121-125 |
|
2 | 5 |
SUPPORT AND MOVEMENT
|
Supporting Tissues in Plants and Their Functions
|
By the end of the
lesson, the learner
should be able to:
Identify types of supporting tissues: collenchyma, sclerenchyma, xylem vessels, tracheids. Explain functions of each supporting tissue. Describe how these tissues provide mechanical strength. Compare tissue properties and locations. |
Detailed exposition on supporting tissue types using diagrams. Discussion on tissue characteristics and functions. Examination of tissue examples in stem sections. Comparison of tissue properties and mechanical strength. Drawing tissue structures and arrangements.
|
Textbook, chalkboard, chalk, microscope slides (if available), fresh stem sections, exercise books
|
KLB Secondary Biology Form 4, Pages 121-125
|
|
3 | 1 |
SUPPORT AND MOVEMENT
|
Types of Animal Skeletons
Fish Locomotion - Structure and Mechanism |
By the end of the
lesson, the learner
should be able to:
Identify three types of animal skeletons: hydrostatic, exoskeleton, endoskeleton. Compare structure, composition, and functions of each skeleton type. Explain advantages and disadvantages of different skeleton types. |
Exposition on skeleton types using examples. Examination of arthropod specimens showing exoskeleton. Discussion on bone and cartilage as endoskeleton materials. Comparison table of skeleton characteristics. Analysis of evolutionary adaptations and growth limitations.
|
Textbook, chalkboard, chalk, arthropod specimens (grasshoppers, crabs), bone specimens, comparison charts
Textbook, fresh fish specimen, chalkboard, chalk, forceps, measuring tools, calculator, exercise books |
KLB Secondary Biology Form 4, Pages 126-127
|
|
3 | 2 |
SUPPORT AND MOVEMENT
|
Human Axial Skeleton - Skull and Rib Cage
|
By the end of the
lesson, the learner
should be able to:
Describe structure and functions of human skull. Explain structure and function of rib cage. Understand protection and support roles. Identify bone features and adaptations. |
Examination of skull and rib cage specimens or models. Drawing skull and rib cage structures. Discussion on brain and organ protection. Analysis of breathing movements and rib articulation. Identification of skull sutures and rib cage components.
|
Textbook, chalkboard, chalk, skull and rib cage specimens, exercise books
|
KLB Secondary Biology Form 4, Pages 130-131
|
|
3 | 3-4 |
SUPPORT AND MOVEMENT
|
Vertebral Column - Cervical and Thoracic Vertebrae
Vertebral Column - Lumbar, Sacral and Caudal Vertebrae |
By the end of the
lesson, the learner
should be able to:
Describe general structure of vertebrae. Identify features of cervical vertebrae including atlas and axis. Explain features and adaptations of thoracic vertebrae. Compare regional vertebrae differences. Identify features of lumbar vertebrae and their weight-bearing adaptations. Describe structure of sacral vertebrae and sacrum formation. Explain structure of caudal vertebrae. Compare all vertebrae types. |
Examination of cervical and thoracic vertebrae specimens. Drawing and labeling atlas, axis, and typical cervical vertebrae. Study of thoracic vertebrae and rib articulation points. Discussion on regional adaptations for function. Comparison of vertebrae features.
Examination of lumbar, sacral, and caudal vertebrae specimens. Drawing large centrum and processes of lumbar vertebrae. Study of sacrum formation and fusion. Discussion on weight support and regional specializations. Complete vertebral column analysis. |
Textbook, chalkboard, chalk, cervical and thoracic vertebrae specimens, exercise books
Textbook, chalkboard, chalk, lumbar, sacral, and caudal vertebrae specimens, complete vertebral column |
KLB Secondary Biology Form 4, Pages 131-134
KLB Secondary Biology Form 4, Pages 134-136 |
|
3 | 5 |
SUPPORT AND MOVEMENT
|
Pectoral Girdle and Forelimb Bones
|
By the end of the
lesson, the learner
should be able to:
Describe structure of pectoral girdle components: scapula and clavicle. Identify forelimb bones: humerus, radius, ulna, carpals, metacarpals, phalanges. Explain joint formations and articulations. |
Examination of pectoral girdle and forelimb bones. Drawing and labeling complete forelimb structure. Discussion on shoulder and elbow joint formation. Analysis of bone features and muscle attachment points. Study of pentadactyl limb pattern.
|
Textbook, chalkboard, chalk, pectoral girdle and forelimb bone specimens, exercise books
|
KLB Secondary Biology Form 4, Pages 136-138
|
|
4 | 1 |
SUPPORT AND MOVEMENT
|
Pelvic Girdle and Hindlimb Bones
Types of Joints and Their Structure |
By the end of the
lesson, the learner
should be able to:
Describe structure of pelvic girdle: ilium, ischium, pubis. Identify hindlimb bones: femur, tibia, fibula, tarsals, metatarsals, phalanges. Explain weight-bearing adaptations and joint formations. |
Examination of pelvic girdle and hindlimb bones. Drawing hip bone structure and acetabulum. Study of hindlimb bone features and knee joint. Discussion on weight transmission and locomotion adaptations. Comparison of forelimb and hindlimb structures.
|
Textbook, chalkboard, chalk, pelvic girdle and hindlimb bone specimens, exercise books
Textbook, chalkboard, chalk, joint specimens or models, exercise books |
KLB Secondary Biology Form 4, Pages 138-140
|
|
4 | 2 |
SUPPORT AND MOVEMENT
|
Ball and Socket vs Hinge Joints; Movement Mechanisms
|
By the end of the
lesson, the learner
should be able to:
Compare ball and socket joints with hinge joints. Describe movement capabilities and examples of each joint type. Explain how muscles work in antagonistic pairs at joints. Understand lever systems in movement. |
Examination of hip/shoulder and elbow/knee joints. Demonstration of movement ranges and planes. Drawing joint structures and movement mechanisms. Practical demonstration of biceps and triceps action. Analysis of flexor and extensor muscle function.
|
Textbook, chalkboard, chalk, joint specimens, practical movement demonstrations, exercise books
|
KLB Secondary Biology Form 4, Pages 141-143
|
|
4 | 3-4 |
SUPPORT AND MOVEMENT
|
Types of Muscle Tissue and Their Functions
Skeletal Muscle Structure and Contraction Mechanism |
By the end of the
lesson, the learner
should be able to:
Identify three types of muscle tissue: skeletal (striated), smooth (visceral), and cardiac. Compare structure and functions of each muscle type. Explain voluntary vs involuntary muscle control. Describe muscle fiber characteristics. Describe detailed structure of skeletal muscle fibers including myofibrils, actin, and myosin. Explain muscle contraction mechanism and sliding filament theory. Understand energy requirements and muscle fatigue. |
Drawing structures of different muscle types on chalkboard. Detailed comparison of muscle fiber characteristics. Discussion on muscle control mechanisms and locations. Analysis of muscle contraction properties and endurance. Examples of each muscle type in body systems.
Detailed exposition on muscle fiber structure using diagrams. Discussion on sliding filament theory and molecular basis of contraction. Explanation of ATP requirements and calcium ion role. Analysis of muscle fatigue and recovery. Practical muscle function demonstrations. |
Textbook, chalkboard, chalk, exercise books, muscle tissue comparison charts
Textbook, chalkboard, chalk, exercise books, detailed muscle structure diagrams |
KLB Secondary Biology Form 4, Pages 142-144
KLB Secondary Biology Form 4, Pages 142-143 |
|
4 | 5 |
SUPPORT AND MOVEMENT
|
Smooth and Cardiac Muscle Specializations
|
By the end of the
lesson, the learner
should be able to:
Describe structure and functions of smooth muscle in various organs. Explain cardiac muscle specializations and continuous rhythmic contractions. Compare muscle types in terms of structure, control, and endurance. |
Drawing smooth and cardiac muscle structures and locations. Discussion on involuntary muscle control mechanisms. Explanation of cardiac muscle intercalated discs and myogenic nature. Comprehensive comparison of all muscle types. Analysis of muscle adaptations to function.
|
Textbook, chalkboard, chalk, exercise books, comprehensive muscle comparison tables
|
KLB Secondary Biology Form 4, Pages 143-144
|
|
5-9 |
Revision |
Your Name Comes Here