If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Definition of Reaction Rate and Collision Theory
|
By the end of the
lesson, the learner
should be able to:
- Define rate of reaction and explain the term activation energy -Describe collision theory and explain why not all collisions result in products -Draw energy diagrams showing activation energy -Explain how activation energy affects reaction rates |
Q/A: Compare speeds of different reactions (precipitation vs rusting). Define reaction rate as "measure of how much reactants are consumed or products formed per unit time." Introduce collision theory: particles must collide with minimum energy (activation energy) for successful reaction. Draw energy diagram showing activation energy barrier. Discuss factors affecting collision frequency and energy.
|
Examples of fast/slow reactions, energy diagram templates, chalk/markers for diagrams
|
KLB Secondary Chemistry Form 4, Pages 64-65
|
|
2 | 2 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Concentration on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain the effect of concentration on reaction rates -Investigate reaction of magnesium with different concentrations of sulphuric acid -Illustrate reaction rates graphically and interpret experimental data -Calculate concentrations and plot graphs of concentration vs time |
Class experiment: Label 4 conical flasks A-D. Add 40cm³ of 2M H₂SO₄ to A, dilute others with water (30+10, 20+20, 10+30 cm³). Drop 2cm magnesium ribbon into each, time complete dissolution. Record in Table 3.1. Calculate concentrations, plot graph. Explain: higher concentration → more collisions → faster reaction.
|
4 conical flasks, 2M H₂SO₄, distilled water, magnesium ribbon, stopwatch, measuring cylinders, graph paper
|
KLB Secondary Chemistry Form 4, Pages 65-67
|
|
2 | 3-4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Change of Reaction Rate with Time
Effect of Temperature on Reaction Rate |
By the end of the
lesson, the learner
should be able to:
- Describe methods used to measure rate of reaction -Investigate how reaction rate changes as reaction proceeds -Plot graphs of volume of gas vs time -Calculate average rates at different time intervals - Explain the effect of temperature on reaction rates -Investigate temperature effects using sodium thiosulphate and HCl -Plot graphs of time vs temperature and 1/time vs temperature -Apply collision theory to explain temperature effects |
Class experiment: React 2cm magnesium ribbon with 100cm³ of 0.5M HCl in conical flask. Collect H₂ gas in graduated syringe as in Fig 3.4. Record gas volume every 30 seconds for 5 minutes in Table 3.2. Plot volume vs time graph. Calculate average rates between time intervals. Explain why rate decreases as reactants are consumed.
Class experiment: Place 30cm³ of 0.15M Na₂S₂O₃ in flasks at room temp, 30°C, 40°C, 50°C, 60°C. Mark cross on paper under flask. Add 5cm³ of 2M HCl, time until cross disappears. Record in Table 3.4. Plot time vs temperature and 1/time vs temperature graphs. Explain: higher temperature → more kinetic energy → more effective collisions. |
0.5M HCl, magnesium ribbon, conical flask, gas collection apparatus, graduated syringe, stopwatch, graph paper
0.15M Na₂S₂O₃, 2M HCl, conical flasks, water baths at different temperatures, paper with cross marked, stopwatch, thermometers |
KLB Secondary Chemistry Form 4, Pages 67-70
KLB Secondary Chemistry Form 4, Pages 70-73 |
|
2 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Surface Area on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain the effect of surface area on reaction rates -Investigate reaction of marble chips vs marble powder with HCl -Compare reaction rates using gas collection -Relate particle size to surface area and collision frequency |
Class experiment: React 2.5g marble chips with 50cm³ of 1M HCl, collect CO₂ gas using apparatus in Fig 3.10. Record gas volume every 30 seconds. Repeat with 2.5g marble powder. Record in Table 3.5. Plot both curves on same graph. Write equation: CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂. Explain: smaller particles → larger surface area → more collision sites → faster reaction.
|
Marble chips, marble powder, 1M HCl, gas collection apparatus, balance, conical flasks, measuring cylinders, graph paper
|
KLB Secondary Chemistry Form 4, Pages 73-76
|
|
3 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Catalysts on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain effects of suitable catalysts on reaction rates -Investigate decomposition of hydrogen peroxide with and without catalyst -Define catalyst and explain how catalysts work -Compare activation energies in catalyzed vs uncatalyzed reactions |
Class experiment: Decompose 5cm³ of 20-volume H₂O₂ in 45cm³ water without catalyst, collect O₂ gas. Repeat adding 2g MnO₂ powder. Record gas volumes as in Fig 3.12. Compare rates and final mass of MnO₂. Write equation: 2H₂O₂ → 2H₂O + O₂. Define catalyst and explain how it lowers activation energy. Show energy diagrams for both pathways.
|
20-volume H₂O₂, MnO₂ powder, gas collection apparatus, balance, conical flasks, filter paper, measuring cylinders
|
KLB Secondary Chemistry Form 4, Pages 76-78
|
|
3 | 2 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Catalysts on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain effects of suitable catalysts on reaction rates -Investigate decomposition of hydrogen peroxide with and without catalyst -Define catalyst and explain how catalysts work -Compare activation energies in catalyzed vs uncatalyzed reactions |
Class experiment: Decompose 5cm³ of 20-volume H₂O₂ in 45cm³ water without catalyst, collect O₂ gas. Repeat adding 2g MnO₂ powder. Record gas volumes as in Fig 3.12. Compare rates and final mass of MnO₂. Write equation: 2H₂O₂ → 2H₂O + O₂. Define catalyst and explain how it lowers activation energy. Show energy diagrams for both pathways.
|
20-volume H₂O₂, MnO₂ powder, gas collection apparatus, balance, conical flasks, filter paper, measuring cylinders
|
KLB Secondary Chemistry Form 4, Pages 76-78
|
|
3 | 3-4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Light and Pressure on Reaction Rate
Reversible Reactions |
By the end of the
lesson, the learner
should be able to:
- Identify reactions affected by light -Investigate effect of light on silver bromide decomposition -Explain effect of pressure on gaseous reactions -Give examples of photochemical reactions - State examples of simple reversible reactions -Investigate heating of hydrated copper(II) sulphate -Write equations for reversible reactions using double arrows -Distinguish between reversible and irreversible reactions |
Teacher demonstration: Mix KBr and AgNO₃ solutions to form AgBr precipitate. Divide into 3 test tubes: place one in dark cupboard, one on bench, one in direct sunlight. Observe color changes after 10 minutes. Write equations. Discuss photochemical reactions: photography, Cl₂ + H₂, photosynthesis. Explain pressure effects on gaseous reactions through compression.
Class experiment: Heat CuSO₄·5H₂O crystals in boiling tube A, collect liquid in tube B as in Fig 3.15. Observe color changes: blue → white + colorless liquid. Pour liquid back into tube A, observe return to blue. Write equation with double arrows: CuSO₄·5H₂O ⇌ CuSO₄ + 5H₂O. Give other examples: NH₄Cl ⇌ NH₃ + HCl. Compare with irreversible reactions. |
0.1M KBr, 0.05M AgNO₃, test tubes, dark cupboard, direct light source, examples of photochemical reactions
CuSO₄·5H₂O crystals, boiling tubes, delivery tube, heating source, test tube holder |
KLB Secondary Chemistry Form 4, Pages 78-80
|
|
3 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Chemical Equilibrium
|
By the end of the
lesson, the learner
should be able to:
- Explain chemical equilibrium -Define dynamic equilibrium -Investigate acid-base equilibrium using indicators -Explain why equilibrium appears static but is actually dynamic |
Experiment: Add 0.5M NaOH to 2cm³ in boiling tube with universal indicator. Add 0.5M HCl dropwise until green color (neutralization point). Continue adding base then acid alternately, observe color changes. Explain equilibrium as state where forward and backward reaction rates are equal. Use NH₄Cl ⇌ NH₃ + HCl example to show dynamic nature. Introduce equilibrium symbol ⇌.
|
0.5M NaOH, 0.5M HCl, universal indicator, boiling tubes, droppers, examples of equilibrium systems
|
KLB Secondary Chemistry Form 4, Pages 80-82
|
|
4 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Le Chatelier's Principle and Effect of Concentration
|
By the end of the
lesson, the learner
should be able to:
- State Le Chatelier's Principle -Explain effect of concentration changes on equilibrium position -Investigate bromine water equilibrium with acid/base addition -Apply Le Chatelier's Principle to predict equilibrium shifts |
Experiment: Add 2M NaOH dropwise to 20cm³ bromine water until colorless. Then add 2M HCl until excess, observe color return. Write equation: Br₂ + H₂O ⇌ HBr + HBrO. Explain Le Chatelier's Principle: "When change applied to system at equilibrium, system moves to oppose that change." Demonstrate with chromate/dichromate equilibrium: CrO₄²⁻ + H⁺ ⇌ Cr₂O₇²⁻ + H₂O.
|
Bromine water, 2M NaOH, 2M HCl, beakers, chromate/dichromate solutions for demonstration
|
KLB Secondary Chemistry Form 4, Pages 82-84
|
|
4 | 2 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Pressure and Temperature on Equilibrium
|
By the end of the
lesson, the learner
should be able to:
- Explain effect of pressure changes on equilibrium -Explain effect of temperature changes on equilibrium -Investigate NO₂/N₂O₄ equilibrium with temperature -Apply Le Chatelier's Principle to industrial processes |
Teacher demonstration: React copper turnings with concentrated HNO₃ to produce NO₂ gas in test tube. Heat and cool the tube, observe color changes: brown ⇌ pale yellow representing 2NO₂ ⇌ N₂O₄. Explain pressure effects using molecule count. Show Table 3.7 with pressure effects. Discuss temperature effects: heating favors endothermic direction, cooling favors exothermic direction. Use Table 3.8.
|
Copper turnings, concentrated HNO₃, test tubes, heating source, ice bath, gas collection apparatus, safety equipment
|
KLB Secondary Chemistry Form 4, Pages 84-87
|
|
4 | 3-4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Industrial Applications - Haber Process
Industrial Applications - Contact Process |
By the end of the
lesson, the learner
should be able to:
- Apply equilibrium principles to Haber Process -Explain optimum conditions for ammonia manufacture -Calculate effect of temperature and pressure on yield -Explain role of catalysts in industrial processes - Apply equilibrium principles to Contact Process -Explain optimum conditions for sulphuric acid manufacture -Compare different industrial equilibrium processes -Evaluate economic factors in industrial chemistry |
Analyze Haber Process: N₂ + 3H₂ ⇌ 2NH₃ ΔH = -92 kJ/mol. Apply Le Chatelier's Principle: high pressure favors forward reaction (4 molecules → 2 molecules), low temperature favors exothermic forward reaction but slows rate. Explain optimum conditions: 450°C temperature, 200 atmospheres pressure, iron catalyst. Discuss removal of NH₃ to shift equilibrium right. Economic considerations.
Analyze Contact Process: 2SO₂ + O₂ ⇌ 2SO₃ ΔH = -197 kJ/mol. Apply principles: high pressure favors forward reaction (3 molecules → 2 molecules), low temperature favors exothermic reaction. Explain optimum conditions: 450°C, atmospheric pressure, V₂O₅ catalyst, 96% conversion. Compare with Haber Process. Discuss catalyst choice and economic factors. |
Haber Process flow diagram, equilibrium data showing temperature/pressure effects on NH₃ yield, industrial catalyst information
Contact Process flow diagram, comparison table with Haber Process, catalyst effectiveness data |
KLB Secondary Chemistry Form 4, Pages 87-89
KLB Secondary Chemistry Form 4, Pages 89 |
|
4 | 5 |
ELECTROCHEMISTRY
|
Redox Reactions and Oxidation Numbers
|
By the end of the
lesson, the learner
should be able to:
Define redox reactions in terms of electron transfer - State rules for assigning oxidation numbers - Calculate oxidation numbers in compounds - Identify oxidation and reduction processes |
Q/A: Review previous knowledge
- Experiment 4.1: Iron filings + copper(II) sulphate - Experiment 4.2: Iron(II) ions + hydrogen peroxide - Discussion on oxidation number rules with examples |
Iron filings, 1M CuSO₄, 1M FeSO₄, 2M NaOH, 20V H₂O₂, test tubes
|
KLB Secondary Chemistry Form 4, Pages 108-116
|
|
5 | 1 |
ELECTROCHEMISTRY
|
Oxidation Numbers in Naming and Redox Identification
Displacement Reactions - Metals and Halogens |
By the end of the
lesson, the learner
should be able to:
Apply oxidation numbers to systematic naming - Use oxidation numbers to identify redox reactions - Distinguish oxidizing and reducing agents - Track electron movement in reactions |
Worked examples: Calculate oxidation numbers in complex compounds
- Practice IUPAC naming - Exercise 4.1: Identify redox reactions using oxidation numbers - Name compounds with variable oxidation states |
Compound charts, calculators, student books, practice exercises
Various metals (Ca, Mg, Zn, Fe, Pb, Cu), metal salt solutions, halogens (Cl₂, Br₂, I₂), halide solutions |
KLB Secondary Chemistry Form 4, Pages 109-116
|
|
5 | 2 |
ELECTROCHEMISTRY
|
Electrochemical Cells and Cell Diagrams
Standard Electrode Potentials |
By the end of the
lesson, the learner
should be able to:
Define electrode potential and EMF - Describe electrochemical cell components - Draw cell diagrams using correct notation - Explain electron flow and salt bridge function |
Experiment 4.5: Set up Zn/Cu cell and other metal combinations
- Measure EMF values - Practice writing cell notation - Learn conventional representation methods |
Metal electrodes, 1M metal salt solutions, voltmeters, salt bridges, connecting wires
Standard electrode potential table, diagrams, charts showing standard conditions |
KLB Secondary Chemistry Form 4, Pages 123-128
|
|
5 | 3-4 |
ELECTROCHEMISTRY
|
Calculating Cell EMF and Predicting Reactions
Types of Electrochemical Cells Electrolysis of Aqueous Solutions I Electrolysis of Aqueous Solutions II |
By the end of the
lesson, the learner
should be able to:
Calculate EMF using standard electrode potentials - Predict reaction spontaneity using EMF - Solve numerical problems on cell EMF - Apply EMF calculations practically Define electrolysis and preferential discharge - Investigate electrolysis of dilute sodium chloride - Compare dilute vs concentrated solution effects - Test products formed |
Worked examples: Calculate EMF for various cells
- Practice EMF calculations - Exercise 4.2 & 4.3: Cell EMF and reaction feasibility problems - Distinguish spontaneous from non-spontaneous reactions Experiment 4.6(a): Electrolysis of dilute NaCl - Experiment 4.6(b): Electrolysis of brine - Test gases evolved - Compare results and explain differences |
Calculators, electrode potential data, worked examples, practice problems
Cell diagrams, sample batteries, charts showing cell applications Dilute and concentrated NaCl solutions, carbon electrodes, gas collection tubes, test equipment U-tube apparatus, 2M H₂SO₄, 0.5M MgSO₄, platinum/carbon electrodes, gas syringes |
KLB Secondary Chemistry Form 4, Pages 133-137
KLB Secondary Chemistry Form 4, Pages 141-146 |
|
5 | 5 |
ELECTROCHEMISTRY
|
Effect of Electrode Material on Electrolysis
|
By the end of the
lesson, the learner
should be able to:
Compare inert vs reactive electrodes - Investigate electrode dissolution - Explain electrode selection importance - Analyze copper purification process |
Experiment 4.9: Electrolysis of CuSO₄ with carbon vs copper electrodes
- Weigh electrodes before/after - Observe color changes - Discussion on electrode effects |
Copper and carbon electrodes, 3M CuSO₄ solution, accurate balance, beakers, connecting wires
|
KLB Secondary Chemistry Form 4, Pages 141-148
|
|
6 | 1 |
ELECTROCHEMISTRY
|
Factors Affecting Electrolysis
|
By the end of the
lesson, the learner
should be able to:
Identify factors affecting preferential discharge - Explain electrochemical series influence - Discuss concentration and electrode effects - Predict electrolysis products |
Review electrochemical series and discharge order
- Analysis of concentration effects on product formation - Summary of all factors affecting electrolysis - Practice prediction problems |
Electrochemical series chart, summary tables, practice exercises, student books
|
KLB Secondary Chemistry Form 4, Pages 153-155
|
|
6 | 2 |
ELECTROCHEMISTRY
|
Factors Affecting Electrolysis
|
By the end of the
lesson, the learner
should be able to:
Identify factors affecting preferential discharge - Explain electrochemical series influence - Discuss concentration and electrode effects - Predict electrolysis products |
Review electrochemical series and discharge order
- Analysis of concentration effects on product formation - Summary of all factors affecting electrolysis - Practice prediction problems |
Electrochemical series chart, summary tables, practice exercises, student books
|
KLB Secondary Chemistry Form 4, Pages 153-155
|
|
6 | 3-4 |
ELECTROCHEMISTRY
|
Applications of Electrolysis I
Applications of Electrolysis II |
By the end of the
lesson, the learner
should be able to:
Describe electrolytic extraction of reactive metals - Explain electroplating process - Apply electrolysis principles to metal coating - Design electroplating setup Describe manufacture of NaOH and Cl₂ from brine - Explain mercury cell operation - Analyze industrial electrolysis processes - Discuss environmental considerations |
Discussion: Extraction of Na, Mg, Al by electrolysis
- Practical: Electroplate iron nail with copper - Calculate plating requirements - Industrial applications Study mercury cell for NaOH production - Flow chart analysis of industrial processes - Discussion on applications and environmental impact - Purification of metals |
Iron nails, copper electrodes, CuSO₄ solution, power supply, industrial process diagrams
Flow charts, mercury cell diagrams, environmental impact data, industrial case studies |
KLB Secondary Chemistry Form 4, Pages 155-157
|
|
6 | 5 |
ELECTROCHEMISTRY
|
Faraday's Laws and Quantitative Electrolysis
|
By the end of the
lesson, the learner
should be able to:
State Faraday's laws of electrolysis - Define Faraday constant - Calculate mass deposited in electrolysis - Relate electricity to amount of substance |
Experiment 4.10: Quantitative electrolysis of CuSO₄
- Measure mass vs electricity passed - Calculate Faraday constant - Verify Faraday's laws |
Accurate balance, copper electrodes, CuSO₄ solution, ammeter, timer, calculators
|
KLB Secondary Chemistry Form 4, Pages 161-164
|
|
7 | 1 |
ELECTROCHEMISTRY
|
Electrolysis Calculations I
|
By the end of the
lesson, the learner
should be able to:
Calculate mass of products from electrolysis - Determine volumes of gases evolved - Apply Faraday's laws to numerical problems - Solve basic electrolysis calculations |
Worked examples: Mass and volume calculations
- Problems involving different ions - Practice with Faraday constant - Basic numerical problems |
Calculators, worked examples, practice problems, gas volume data, Faraday constant
|
KLB Secondary Chemistry Form 4, Pages 161-164
|
|
7 | 2 |
ELECTROCHEMISTRY
|
Electrolysis Calculations II
|
By the end of the
lesson, the learner
should be able to:
Determine charge on ions from electrolysis data - Calculate current-time relationships - Solve complex multi-step problems - Apply concepts to industrial situations |
Complex problems: Determine ionic charges
- Current-time-mass relationships - Multi-step calculations - Industrial calculation examples |
Calculators, complex problem sets, industrial data, student books
|
KLB Secondary Chemistry Form 4, Pages 161-164
|
|
7 | 3-4 |
ELECTROCHEMISTRY
ORGANIC CHEMISTRY II |
Advanced Applications and Problem Solving
Introduction to Alkanols and Nomenclature Isomerism in Alkanols |
By the end of the
lesson, the learner
should be able to:
Solve examination-type electrochemistry problems - Apply all concepts in integrated problems - Analyze real-world electrochemical processes - Practice complex calculations Define alkanols and identify functional group - Apply nomenclature rules for alkanols - Draw structural formulae of simple alkanols - Compare alkanols with corresponding alkanes |
Comprehensive problems combining redox, cells, and electrolysis
- Past examination questions - Industrial case study analysis - Advanced problem-solving techniques Q/A: Review alkanes, alkenes from Form 3 - Study functional group -OH concept - Practice naming alkanols using IUPAC rules - Complete Table 6.2 - alkanol structures |
Past papers, comprehensive problem sets, industrial case studies, calculators
Molecular models, Table 6.1 and 6.2, alkanol structure charts, student books Isomer structure charts, molecular models, practice worksheets, student books |
KLB Secondary Chemistry Form 4, Pages 108-164
KLB Secondary Chemistry Form 4, Pages 167-170 |
|
7 | 5 |
ORGANIC CHEMISTRY II
|
Laboratory Preparation of Ethanol
|
By the end of the
lesson, the learner
should be able to:
Describe fermentation process - Prepare ethanol in laboratory - Write equation for glucose fermentation - Explain role of yeast and conditions needed |
Experiment 6.1: Fermentation of sugar solution with yeast
- Set up apparatus for 2-3 days - Observe gas evolution - Test for CO₂ with lime water - Smell final product |
Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer
|
KLB Secondary Chemistry Form 4, Pages 171-172
|
|
8 | 1 |
ORGANIC CHEMISTRY II
|
Industrial Preparation and Physical Properties
Chemical Properties of Alkanols I |
By the end of the
lesson, the learner
should be able to:
Explain hydration of ethene method - Compare laboratory and industrial methods - Analyze physical properties of alkanols - Relate properties to molecular structure |
Study ethene hydration using phosphoric acid catalyst
- Compare fermentation vs industrial methods - Analyze Table 6.3 - physical properties - Discussion on hydrogen bonding effects |
Table 6.3, industrial process diagrams, ethene structure models, property comparison charts
Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes |
KLB Secondary Chemistry Form 4, Pages 171-173
|
|
8 | 2 |
ORGANIC CHEMISTRY II
|
Chemical Properties of Alkanols II
Uses of Alkanols and Health Effects |
By the end of the
lesson, the learner
should be able to:
Investigate oxidation and esterification reactions - Test oxidizing agents on ethanol - Prepare esters from alkanols - Explain dehydration reactions |
Complete Experiment 6.2: Test with acidified K₂Cr₂O₇ and KMnO₄
- Observe color changes - Esterification with ethanoic acid - Study dehydration conditions |
Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus
Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials |
KLB Secondary Chemistry Form 4, Pages 173-176
|
|
8 | 3-4 |
ORGANIC CHEMISTRY II
|
Introduction to Alkanoic Acids
Laboratory Preparation of Ethanoic Acid Physical and Chemical Properties of Alkanoic Acids |
By the end of the
lesson, the learner
should be able to:
Define alkanoic acids and functional group - Apply nomenclature rules - Draw structural formulae - Compare with alkanols Investigate chemical reactions of ethanoic acid - Test with various reagents - Write chemical equations - Analyze acid strength |
Study carboxyl group (-COOH) structure
- Practice naming using IUPAC rules - Complete Table 6.5 and 6.6 - Compare functional groups of alkanols and acids Experiment following Table 6.8: Test ethanoic acid with indicators, metals, carbonates, bases - Record observations - Write equations - Discuss weak acid behavior |
Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books
Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask 2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes |
KLB Secondary Chemistry Form 4, Pages 177-179
KLB Secondary Chemistry Form 4, Pages 180-182 |
|
8 | 5 |
ORGANIC CHEMISTRY II
|
Esterification and Uses of Alkanoic Acids
|
By the end of the
lesson, the learner
should be able to:
Explain ester formation process - Write esterification equations - State uses of alkanoic acids - Prepare simple esters |
Complete esterification experiments
- Study concentrated H₂SO₄ as catalyst - Write general esterification equation - Discuss applications in food, drugs, synthetic fibres |
Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water
|
KLB Secondary Chemistry Form 4, Pages 182-183
|
|
9 |
Mid term |
|||||||
10 | 1 |
ORGANIC CHEMISTRY II
|
Introduction to Detergents and Soap Preparation
|
By the end of the
lesson, the learner
should be able to:
Define detergents and classify types - Explain saponification process - Prepare soap in laboratory - Compare soapy and soapless detergents |
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH - Add salt for salting out - Test soap formation |
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
|
KLB Secondary Chemistry Form 4, Pages 183-186
|
|
10 | 2 |
ORGANIC CHEMISTRY II
|
Introduction to Detergents and Soap Preparation
|
By the end of the
lesson, the learner
should be able to:
Define detergents and classify types - Explain saponification process - Prepare soap in laboratory - Compare soapy and soapless detergents |
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH - Add salt for salting out - Test soap formation |
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
|
KLB Secondary Chemistry Form 4, Pages 183-186
|
|
10 | 3-4 |
ORGANIC CHEMISTRY II
|
Mode of Action of Soap and Hard Water Effects
Soapless Detergents and Environmental Effects |
By the end of the
lesson, the learner
should be able to:
Explain soap molecule structure - Describe cleaning mechanism - Investigate hard water effects - Compare soap performance in different waters Explain soapless detergent preparation - Compare advantages/disadvantages - Discuss environmental impact - Analyze pollution effects |
Study hydrophobic and hydrophilic ends
- Demonstrate micelle formation - Test soap in distilled vs hard water - Observe scum formation - Write precipitation equations Study alkylbenzene sulphonate preparation - Compare Table 6.9 - soap vs soapless - Discussion on eutrophication and biodegradability - Environmental awareness |
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents |
KLB Secondary Chemistry Form 4, Pages 186-188
KLB Secondary Chemistry Form 4, Pages 188-191 |
|
10 | 5 |
ORGANIC CHEMISTRY II
|
Introduction to Polymers and Addition Polymerization
|
By the end of the
lesson, the learner
should be able to:
Define polymers, monomers, and polymerization - Explain addition polymerization - Draw polymer structures - Calculate polymer properties |
Study polymer concept and terminology
- Practice drawing addition polymers from monomers - Examples: polyethene, polypropene, PVC - Calculate molecular masses |
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
|
KLB Secondary Chemistry Form 4, Pages 191-195
|
|
11 | 1 |
ORGANIC CHEMISTRY II
|
Addition Polymers - Types and Properties
|
By the end of the
lesson, the learner
should be able to:
Identify different addition polymers - Draw structures from monomers - Name common polymers - Relate structure to properties |
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures - Work through polymer calculation examples - Properties analysis |
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
|
KLB Secondary Chemistry Form 4, Pages 195-197
|
|
11 | 2 |
ORGANIC CHEMISTRY II
|
Condensation Polymerization and Natural Polymers
|
By the end of the
lesson, the learner
should be able to:
Explain condensation polymerization - Compare with addition polymerization - Study natural polymers - Analyze nylon formation |
Study nylon 6,6 formation from diamine and dioic acid
- Natural polymers: starch, protein, rubber - Vulcanization process - Compare synthetic vs natural |
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples
|
KLB Secondary Chemistry Form 4, Pages 197-200
|
|
11 | 3-4 |
ORGANIC CHEMISTRY II
|
Polymer Properties and Applications
Comprehensive Problem Solving and Integration |
By the end of the
lesson, the learner
should be able to:
Compare advantages and disadvantages of synthetic polymers - State uses of different polymers - Discuss environmental concerns - Analyze polymer selection Solve complex problems involving alkanols and acids - Apply knowledge to practical situations - Integrate polymer concepts - Practice examination questions |
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability - Disadvantages: non-biodegradability, toxic gases - Application analysis Worked examples on organic synthesis - Problem-solving on isomers, reactions, polymers - Integration of all unit concepts - Practice examination-style questions |
Table 6.10, polymer application samples, environmental impact studies, product examples
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts |
KLB Secondary Chemistry Form 4, Pages 200-201
KLB Secondary Chemistry Form 4, Pages 167-201 |
|
11 | 5 |
RADIOACTIVITY
|
Introduction, Nuclear Stability and Types of Radioactivity
|
By the end of the
lesson, the learner
should be able to:
Define nuclide, isotope, and radioisotope - Compare nuclear vs chemical reactions - Explain neutron/proton ratios - Distinguish natural from artificial radioactivity |
Q/A: Review atomic structure from Form 2
- Study Table 7.1 - nuclear vs chemical reactions - Analysis of neutron/proton ratios and nuclear stability - Discussion on natural vs artificial radioactivity |
Periodic table, atomic structure charts, Table 7.1, nuclear stability diagrams
|
KLB Secondary Chemistry Form 4, Pages 199-201
|
|
12 | 1 |
RADIOACTIVITY
|
Types of Radiation and Their Properties
Radioactive Decay and Half-Life Concept |
By the end of the
lesson, the learner
should be able to:
Identify alpha, beta, and gamma radiations - Compare penetrating abilities and ionizing power - Explain electric field deflection - Analyze safety implications |
Study alpha (α), beta (β), gamma (γ) characteristics
- Figure 7.2 - penetrating power demonstration - Figure 7.3 - electric field effects - Discussion on radiation protection and detection |
Radiation type charts, penetration diagrams, electric field illustrations, safety equipment charts
Graph paper, Table 7.2 data, calculators, decay curve examples, half-life data table |
KLB Secondary Chemistry Form 4, Pages 201-204
|
|
12 | 2 |
RADIOACTIVITY
|
Half-Life Calculations and Problem Solving
Nuclear Reactions and Equations |
By the end of the
lesson, the learner
should be able to:
Solve complex half-life problems - Determine original amounts from remaining masses - Apply step-by-step and formula methods - Compare isotope decay rates |
Worked examples on half-life calculations using both methods
- Practice determining original amounts - Study various isotope half-lives - Comprehensive problem-solving sessions |
Calculators, comprehensive problem sets, worked examples, isotope half-life comparison tables
Nuclear equation examples, periodic table, conservation law charts, practice worksheets |
KLB Secondary Chemistry Form 4, Pages 204-206
|
|
12 | 3-4 |
RADIOACTIVITY
|
Radioactive Decay Series and Sequential Reactions
Nuclear Fission and Chain Reactions Nuclear Fusion and Energy Comparisons Medical and Diagnostic Applications |
By the end of the
lesson, the learner
should be able to:
Explain sequential radioactive decay - Trace decay series pathways - Identify stable end products - Complete partial decay series Define nuclear fusion process - Compare fusion with fission processes - Write fusion equations - Explain stellar energy production and fusion applications |
Study thorium-232 decay series example
- Trace sequential alpha and beta emissions - Identify stable lead-208 endpoint - Practice completing decay series with missing nuclides Study hydrogen fusion examples - Compare fusion vs fission characteristics and energy yields - Stellar fusion processes - Hydrogen bomb vs nuclear reactor principles |
Decay series charts, thorium series diagram, nuclide stability charts, practice decay series
Fission reaction diagrams, chain reaction illustrations, nuclear reactor diagrams, energy calculation examples Fusion reaction diagrams, comparison tables, stellar fusion charts, energy comparison data Medical radioisotope charts, treatment procedure diagrams, diagnostic equipment images, case studies |
KLB Secondary Chemistry Form 4, Pages 206-207
KLB Secondary Chemistry Form 4, Pages 207-208 |
|
12 | 5 |
RADIOACTIVITY
|
Industrial, Agricultural and Dating Applications
|
By the end of the
lesson, the learner
should be able to:
Explain industrial leak detection - Describe agricultural monitoring techniques - Discuss carbon-14 dating principles - Analyze food preservation methods |
Study leak detection using short half-life isotopes
- Carbon-14 dating of archaeological materials - Phosphorus tracking in agriculture - Gamma radiation food preservation |
Carbon dating examples, agricultural application charts, industrial use diagrams, food preservation data
|
KLB Secondary Chemistry Form 4, Pages 208-209
|
|
13 | 1 |
RADIOACTIVITY
|
Radiation Hazards and Environmental Impact
|
By the end of the
lesson, the learner
should be able to:
Identify radiation health hazards - Explain genetic mutation effects - Discuss major nuclear accidents - Analyze long-term environmental contamination |
Study Chernobyl and Three Mile Island accidents
- Genetic mutation and cancer effects - Long-term radiation exposure consequences - Nuclear waste disposal challenges |
Accident case studies, environmental impact data, radiation exposure charts, contamination maps
|
KLB Secondary Chemistry Form 4, Pages 209-210
|
|
13 | 2 |
RADIOACTIVITY
|
Radiation Hazards and Environmental Impact
|
By the end of the
lesson, the learner
should be able to:
Identify radiation health hazards - Explain genetic mutation effects - Discuss major nuclear accidents - Analyze long-term environmental contamination |
Study Chernobyl and Three Mile Island accidents
- Genetic mutation and cancer effects - Long-term radiation exposure consequences - Nuclear waste disposal challenges |
Accident case studies, environmental impact data, radiation exposure charts, contamination maps
|
KLB Secondary Chemistry Form 4, Pages 209-210
|
|
13 | 3-4 |
RADIOACTIVITY
|
Safety Measures and International Control
Half-Life Problem Solving and Graph Analysis |
By the end of the
lesson, the learner
should be able to:
Explain radiation protection principles - Describe proper storage and disposal methods - Discuss IAEA role and standards - Analyze monitoring and control systems Solve comprehensive half-life problems - Analyze experimental decay data - Plot and interpret decay curves - Determine half-lives graphically |
Study IAEA guidelines and international cooperation
- Radiation protection protocols and ALARA principle - Safe storage, transport and disposal methods - Environmental monitoring systems Plot decay curves from experimental data - Determine half-lives from graphs - Analyze count rate vs time data - Complex half-life calculation problems |
IAEA guidelines, safety protocol charts, monitoring equipment diagrams, international cooperation data
Graph paper, experimental data sets, calculators, statistical analysis examples, comprehensive problem sets |
KLB Secondary Chemistry Form 4, Pages 209-210
KLB Secondary Chemistry Form 4, Pages 199-210 |
|
13 | 5 |
RADIOACTIVITY
|
Nuclear Equations and Conservation Laws
|
By the end of the
lesson, the learner
should be able to:
Balance complex nuclear equations - Complete nuclear reaction series - Identify unknown nuclides using conservation laws - Apply mass-energy relationships |
Practice balancing nuclear reactions with multiple steps
- Complete partial decay series - Identify missing nuclides using conservation principles - Mass-energy calculation problems |
Nuclear equation worksheets, periodic table, decay series diagrams, conservation law examples
|
KLB Secondary Chemistry Form 4, Pages 199-210
|
Your Name Comes Here