Home






SCHEME OF WORK
Chemistry
Form 4 2025
TERM III
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
RATES OF REACTION & REVERSIBLE REACTIONS.
Effect of temperature of reactants on rate of reaction.
By the end of the lesson, the learner should be able to:
Explain the effect of temperature on rate of reaction.
Group experiments: investigate the effects of temperature on the rate of reaction of sodium thiosulphate with dilute HCl.
Sketch and interpret relevant graphs.
Discuss the collision theory and effects of activation energy.
Sodium thiosulphate heated at different temperatures, dilute HCl, stopwatches.
Graph papers.
K.L.B. BK IV
Pages 80-83
2 2
RATES OF REACTION & REVERSIBLE REACTIONS.
Effect of change in surface area of reactants on the rate of a reaction.
Effect of a suitable catalyst on the rate of a reaction
By the end of the lesson, the learner should be able to:
Explain the effect of change in surface area on the rate of a reaction.
Group experiment/ teacher demonstration.

Compare reactions of marble chips with dilute HCl and that of marble chips powder with equally diluted HCl.

Collect evolved gas in each case.

Teacher asks probing questions related to the observations made.
Marble chips, marble chips powder, syringes, conical flasks with stoppers, 1M HCl.
Hydrogen peroxide, manganese (IV) oxide.
K.L.B. BK IV
Pages 83-85
2 3-4
RATES OF REACTION & REVERSIBLE REACTIONS.
Effect of light on rate of specific reactions.
Reversible reactions.
By the end of the lesson, the learner should be able to:
Identify reactions that are affected by light.
Write down equations for reversible reactions.
Teacher demonstration: decomposition of silver bromide in the presence of light.
Mention other examples of reactions affected by light.

Q/A: review temporary and permanent changes.
Teacher demonstration: heating crystals of hydrated copper (II) sulphate, then ?hydrating? them.
Write the corresponding chemical equations.
Give further examples of reversible reactions.

Silver bromide.
Crystals of hydrated copper (II) sulphate.
K.L.B. BK IV
Pages 89-91
K.L.B. BK IV
Pages 91-93
2 5
RATES OF REACTION & REVERSIBLE REACTIONS.
State of equilibrium in chemical reactions.
By the end of the lesson, the learner should be able to:
Define the term equilibrium as used in reversible reactions.
Write down equations of reversible reactions in a state of equilibrium.
Brief discussion, giving examples of chemical equations for reversible reactions.
student book
K.L.B. BK IV
Pages 94-95
3 1
RATES OF REACTION & REVERSIBLE REACTIONS.
Le Chatelier?s Principle.
By the end of the lesson, the learner should be able to:
State Le Chatelier?s Principle.
Investigate the effect of change of concentration of reactants on equilibrium.
Add 2M sodium hydroxide in steps to bromine water.
Make and record observations.
Discuss the results leading to
Le Chatelier?s Principle.
Add 2M sodium hydroxide,
K.L.B. BK IV
Pages 95-97
3 2
RATES OF REACTION & REVERSIBLE REACTIONS.
Effect of change of pressure and temperature on equilibrium shift.
The Haber Process.
By the end of the lesson, the learner should be able to:
Explain the effect of change of pressure & te,perature on equilibrium shift.
Q/A: review kinetic theory of matter.
Q/A & discussion on effect of change of pressure / temperature on shifting of equilibrium; giving specific examples of chemical equations.
Written assignment.
student book
K.L.B. BK IV
Pages 97-101
3 3-4
RATES OF REACTION & REVERSIBLE REACTIONS.
ELECTRO-CHEMISTRY.
The Contact Process.
Redox reactions.
By the end of the lesson, the learner should be able to:
Explain how change of temperature and pressure affect rate of manufacture of sulphur (VI) acid.


Describe redox reactions in terms of gain / loss of electrons.
Identify oxidizing / reducing agents involved in redox reactions.
Probing questions and brief discussion.

Assignment.


Q/A: review cations, anions and charges.
Write down ionic half equations and identify reducing / oxidizing agents.
student book
K.L.B. BK IV
Pages 103-104
K.L.B. BK IV
Pages 108-9
3 5
ELECTRO-CHEMISTRY.
Oxidizing Numbers.
By the end of the lesson, the learner should be able to:
Outline rules of assigning oxidation numbers.
Determine the oxidation numbers of an element in a given compound.
Explain the use of oxidation numbers in naming compounds.
Exposition and giving specific examples.
Work out oxidizing number of elements in given compounds.
Copy and complete a table of compounds containing elements that more than one oxidation number.
student book
K.L.B. BK IV
Pages 109-116
4 1
ELECTRO-CHEMISTRY.
Displacement reactions.
By the end of the lesson, the learner should be able to:
Explain change of oxidation numbers during redox / displacement reactions. Arrange elements in order of their reducing power.
Class standard experiments: reacting metals with solutions containing metal ions.
Taking note of reactions and those that do not take place; and tabulating the results.
Metals: Ca, Na, Zn, Fe, Pb, and Cu.
Solutions containing Ca2+, Mg2+, Zn2+, Fe2+.
K.L.B. BK IV
Pages 116-120
4 2
ELECTRO-CHEMISTRY.
The oxidizing power of an element.
By the end of the lesson, the learner should be able to:
Arrange elements in order of their oxidizing power.
Teacher demonstration / group expts:
Adding halogens to solutions containing halide ions.
Tabulate the results.
Discuss the results and arrive at the oxidizing power series of halogens.
Halogens:
Cl2 (g),
Br2 (l),
I2 (s).

Halides:
KCl, KBr, KI.
K.L.B. BK IV
Pages 120-122
4 3-4
ELECTRO-CHEMISTRY.
Cell diagrams.
Standard Electrode Potentials.
By the end of the lesson, the learner should be able to:
Define the terms electrode, potential and e.m.f. of an electrochemical cell.
Describe components of a cell diagram.
Draw cell diagrams using correct notations.
Identify standard conditions for measuring electrode potentials.
Define the term standard electrode potential of a cell.
Write half reactions of electrochemical cells.
Teacher demonstration: Zinc/ copper cell.
Q/A & discussion: changes in oxidation numbers.
Exposition: cell diagram and deducing the direction of electron flow.

Descriptive and expository approaches: teacher exposes new concepts.
Zinc/ copper cell.

student book
K.L.B. BK IV
Pages 123-128
K.L.B. BK IV
Pages 129-131
4 5
ELECTRO-CHEMISTRY.
Standard electrode potential series.
By the end of the lesson, the learner should be able to:
Recall the order of standard electrode potentials.
Compare oxidizing and reducing powers of substances.
Q/A: review reactivity series, oxidizing agent, reducing agent.
Exposition: the order of standard electrode potentials.
Discussion: oxidizing and reducing powers of substances.
student book
K.L.B. BK IV
Pages 131-133
5 1
ELECTRO-CHEMISTRY.
Emf of a cell.
Possibility of a reaction to take place.
By the end of the lesson, the learner should be able to:
Calculate emf of a cell using standard electrodes potentials.
Q/A: review half-cells.
Worked examples; supervised practice.
Assignment.
student book
K.L.B. BK IV
Pages 133-136
5 2
ELECTRO-CHEMISTRY.
Primary and secondary chemical cells.
By the end of the lesson, the learner should be able to:
Describe the functioning of primary and secondary chemical cells.
Exposition of new concepts and brief discussion
Assignment.


student book
K.L.B. BK IV
Pages 138-141
5 3
ELECTRO-CHEMISTRY.
Electrolysis of dilute NaCl.
By the end of the lesson, the learner should be able to:
Define the term electrolysis.
Explain the concept of preferential discharge of ions.
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected.
Write down equations of reactions at each electrode.
Discussion: preferential discharge of ions at electrodes.
Dilute sodium chloride voltameter.
K.L.B. BK IV
Pages 141-144
5 3-4
ELECTRO-CHEMISTRY.
Electrolysis of dilute NaCl.
Electrolysis of brine.
By the end of the lesson, the learner should be able to:
Define the term electrolysis.
Explain the concept of preferential discharge of ions.
Identify products of electrolysis of brine.
Teacher demonstration: electrolysis of dilute sodium chloride with carbon electrodes.
Test for gases collected.
Write down equations of reactions at each electrode.
Discussion: preferential discharge of ions at electrodes.

Teacher demonstration/ group experiments.
Test for the products of electrolysis.
Write relevant equations.


Dilute sodium chloride voltameter.
Brine voltameter.
K.L.B. BK IV
Pages 141-144
K.L.B. BK IV
Pages 144-146
5 5
ELECTRO-CHEMISTRY.
Electrolysis of dilute sulphuric (VI) acid.
By the end of the lesson, the learner should be able to:
Identify products of electrolysis of dilute sulphuric (VI) acid.
Teacher demonstration/ group experiments.
Test for the products of electrolysis.
Write relevant equations.
Sulphuric acid voltameter.
K.L.B. BK IV
Pages 146-148
6

Midbreak

7 1
ELECTRO-CHEMISTRY.
Factors affecting electrolysis.
By the end of the lesson, the learner should be able to:
Explain factors that affect electrolytic products discharged at electrodes.
Q/A: review the electrochemical series of elements.
Teacher writes down order of ease of discharge of ions at electrodes.
Discussion: other factors; giving suitable examples.
student book
K.L.B. BK IV
Pages 153-5
7 2
ELECTRO-CHEMISTRY.
Application of electrolysis.
By the end of the lesson, the learner should be able to:
Describe some applications of electrolysis.
Probing questions and brief discussion on applications of electrolysis.
Practical assignment on electrolysis: electroplating an iron nail with a suitable metal.
Suitable voltameter.
K.L.B. BK IV
Pages 155-7
7 3-4
ELECTRO-CHEMISTRY.
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Faraday?s law of electrolysis.
Physical properties of alkanols.
Chemical properties of alkanols.
By the end of the lesson, the learner should be able to:
State Faraday?s law of electrolysis.
Solve problems related to Faraday?s law of electrolysis.



Explain the physical properties of alkanols.
Discuss above results, leading to Faraday?s law of electrolysis.

Worked examples.

Assignment.
Comparative evaluation of physical properties of alkanols.
Q/A & discussion on variation in physical properties of alkanols.
Weighing balance, stop watch, copper sulphate voltameter.
student book
K.L.B. BK IV
Pages 161-4
K.L.B. BK IV
Page 212
7 5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Esters and esterification.
By the end of the lesson, the learner should be able to:
Explain formation of esters.
Describe the esterification process.
Teacher exposes and explains new concepts.

Assignment.
student book
K.L.B. BK IV
Pages 215-6
8 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Oxidation of ethanol. Uses of alkanols.
By the end of the lesson, the learner should be able to:
Explain oxidation of ethanol by an oxidizing agent.
State uses of alkanols.
Explain the effects of alcohol on human health
Q/A: review redox reactions, oxidizing and reducing agents.
Brief discussion: oxidation of ethanol using potassium (VII) manganate or potassium (VI) dichromate.
Write corresponding chemical equations.
Open discussion.

student book
K.L.B. BK IV
Pages 216-8
8 2
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Alkanoic (Carboxylic Acids).
By the end of the lesson, the learner should be able to:
Identify the functional group of alkanoic (carboxylic) acids.
Explain formation of alkanoic acid molecule.
Q/A: review functional group of alkanols.

Brief discussion.
student book
K.L.B. BK IV
Page 219
8 3-4
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Nomenclature of alkanoic acids.
Lab preparation of ethanoic acid.
By the end of the lesson, the learner should be able to:
Name and draw the structure of simple alkanoic acids.


Describe laboratory preparation of ethanoic acid.
Guided discovery of the naming system for alkanoic acids.
Teacher demonstration: prepare ethanoic acid in the lab.

Brief discussion on preparation of ethanoic acid.
Chart: homologous series of alkanoic acids.
Concentrated H2SO4, potassium manganate
(VII) Crystals, water bath.
K.L.B. BK IV
Pages 219-221
K.L.B. BK IV
Pages 221-223
8 5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Lab preparation of ethanoic acid.
By the end of the lesson, the learner should be able to:
Describe laboratory preparation of ethanoic acid.
Teacher demonstration: prepare ethanoic acid in the lab.

Brief discussion on preparation of ethanoic acid.
Concentrated H2SO4, potassium manganate
(VII) Crystals, water bath.
K.L.B. BK IV
Pages 221-223
9 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Physical properties of alkanoic acids.
Chemical properties of alkanoic acids.
By the end of the lesson, the learner should be able to:
Explain some physical properties of alkanoic acids.
Compare physical properties of some alkanoic acids.
Discuss the difference in physical properties among alkanoic acids.
student book
Ethanoic acid, universal indicator, sodium carbonate, magnesium strip, ethanol, conc. H2SO4 and sodium hydroxide.
K.L.B. BK IV
Pages 223-4
9 2
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Chemical properties & Uses of alkanoic acids.
By the end of the lesson, the learner should be able to:
Write equations for chemical reactions involving acids.
State uses of alkanoic acids.
Review and discuss the observations above.
Write corresponding chemical equations.
Teacher elucidates uses of alkanoic acids.

student book
K.L.B. BK IV
Pages 225-7
9 3-4
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Soap preparation in the lab.
Cleaning action of soap.
By the end of the lesson, the learner should be able to:
Describe soap preparation in the lab.
Describe the nature of a soap molecule.
Explain the mode of action in cleaning.
Group experiments,
Answer questions based on the experiments already carried out.




Expository and descriptive approaches.
Answer oral questions.
student book
K.L.B. BK IV
Pages 227-230
K.L.B. BK IV
Pages 230-232
9 5
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Effects of hard / soft water on soap.
Soapless detergents.
By the end of the lesson, the learner should be able to:
Explain the effects of hard/ soft water on soap.
Group experiments: form soap lather in different solutions.

Deduce the effects of hard/ soft water on soap.
Distilled water, tap water, rainwater, sodium chloride solution.
Calcium nitrate, Zinc Sulphate, etc.
student book
K.L.B. BK IV
Pages 232-235
10 1
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS)
Polymers and polymerization.
By the end of the lesson, the learner should be able to:
Explain the concepts additional and condensation polymerization as methods of making synthetic polymers.
Identify some products of polymerization.
State merits and demerits of synthetic polymers over natural materials.


Teacher exposes and explains new concepts.

Detailed discussion.

Assignment.
student book
K.L.B. BK IV
Pages 238-242
10 2
RADIOACTIVITY
Definition of radioactivity.
By the end of the lesson, the learner should be able to:


Define radioactivity, a nuclide and radioactive decay.
Differentiate between natural and artificial radioactivity.



Q/A: Review the atomic structure.
Exposition: symbolic representation of an atom / nucleus.
Exposition: meaning of radioactivity and radioactive decay.
Discussion: artificial and natural radioactivity.

student book
K.L.B. BK IV
Pages 249-251
10 3-4
RADIOACTIVITY
Alpha particles.
Equations involving alpha particles.
Beta particles. Gamma rays.
Radioactive Half-Life.
By the end of the lesson, the learner should be able to:
State properties of alpha particles.
Describe methods of detecting alpha particles.

State properties of beta particles.
Define isotopes and isobars.
Write down balanced equations involving both alpha and beta particles.
State properties of gamma rays.
Q/A: position of helium in the periodic table.

Expository approach:


Q/A: Review isotopes.
Expository approach: teacher briefly exposes new concepts.
Examples of equations.
Supervised practice.

Assignment.
student book
student book
Dice.
K.L.B. BK IV
Pages 251-253
10 5
RADIOACTIVITY
Radioactive decay curve.
Nuclear fusion and nuclear fission. Applications of radioactivity.
By the end of the lesson, the learner should be able to:
Plot a radioactive decay curve to deduce the
half ?life from the curve.
Drawing a radioactive decay curve inferring the half-life of the sample from the graph.
Graph papers.
student book
K.L.B. BK IV
Pages 254-5

Your Name Comes Here


Download

Feedback