If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
1 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Definition of Reaction Rate and Collision Theory
|
By the end of the
lesson, the learner
should be able to:
- Define rate of reaction and explain the term activation energy -Describe collision theory and explain why not all collisions result in products -Draw energy diagrams showing activation energy -Explain how activation energy affects reaction rates |
Q/A: Compare speeds of different reactions (precipitation vs rusting). Define reaction rate as "measure of how much reactants are consumed or products formed per unit time." Introduce collision theory: particles must collide with minimum energy (activation energy) for successful reaction. Draw energy diagram showing activation energy barrier. Discuss factors affecting collision frequency and energy.
|
Examples of fast/slow reactions, energy diagram templates, chalk/markers for diagrams
|
KLB Secondary Chemistry Form 4, Pages 64-65
|
|
1 | 2-3 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Definition of Reaction Rate and Collision Theory
Effect of Concentration on Reaction Rate |
By the end of the
lesson, the learner
should be able to:
- Define rate of reaction and explain the term activation energy -Describe collision theory and explain why not all collisions result in products -Draw energy diagrams showing activation energy -Explain how activation energy affects reaction rates - Explain the effect of concentration on reaction rates -Investigate reaction of magnesium with different concentrations of sulphuric acid -Illustrate reaction rates graphically and interpret experimental data -Calculate concentrations and plot graphs of concentration vs time |
Q/A: Compare speeds of different reactions (precipitation vs rusting). Define reaction rate as "measure of how much reactants are consumed or products formed per unit time." Introduce collision theory: particles must collide with minimum energy (activation energy) for successful reaction. Draw energy diagram showing activation energy barrier. Discuss factors affecting collision frequency and energy.
Class experiment: Label 4 conical flasks A-D. Add 40cm³ of 2M H₂SO₄ to A, dilute others with water (30+10, 20+20, 10+30 cm³). Drop 2cm magnesium ribbon into each, time complete dissolution. Record in Table 3.1. Calculate concentrations, plot graph. Explain: higher concentration → more collisions → faster reaction. |
Examples of fast/slow reactions, energy diagram templates, chalk/markers for diagrams
4 conical flasks, 2M H₂SO₄, distilled water, magnesium ribbon, stopwatch, measuring cylinders, graph paper |
KLB Secondary Chemistry Form 4, Pages 64-65
KLB Secondary Chemistry Form 4, Pages 65-67 |
|
1 | 4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Change of Reaction Rate with Time
|
By the end of the
lesson, the learner
should be able to:
- Describe methods used to measure rate of reaction -Investigate how reaction rate changes as reaction proceeds -Plot graphs of volume of gas vs time -Calculate average rates at different time intervals |
Class experiment: React 2cm magnesium ribbon with 100cm³ of 0.5M HCl in conical flask. Collect H₂ gas in graduated syringe as in Fig 3.4. Record gas volume every 30 seconds for 5 minutes in Table 3.2. Plot volume vs time graph. Calculate average rates between time intervals. Explain why rate decreases as reactants are consumed.
|
0.5M HCl, magnesium ribbon, conical flask, gas collection apparatus, graduated syringe, stopwatch, graph paper
|
KLB Secondary Chemistry Form 4, Pages 67-70
|
|
1 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Change of Reaction Rate with Time
|
By the end of the
lesson, the learner
should be able to:
- Describe methods used to measure rate of reaction -Investigate how reaction rate changes as reaction proceeds -Plot graphs of volume of gas vs time -Calculate average rates at different time intervals |
Class experiment: React 2cm magnesium ribbon with 100cm³ of 0.5M HCl in conical flask. Collect H₂ gas in graduated syringe as in Fig 3.4. Record gas volume every 30 seconds for 5 minutes in Table 3.2. Plot volume vs time graph. Calculate average rates between time intervals. Explain why rate decreases as reactants are consumed.
|
0.5M HCl, magnesium ribbon, conical flask, gas collection apparatus, graduated syringe, stopwatch, graph paper
|
KLB Secondary Chemistry Form 4, Pages 67-70
|
|
2 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Temperature on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain the effect of temperature on reaction rates -Investigate temperature effects using sodium thiosulphate and HCl -Plot graphs of time vs temperature and 1/time vs temperature -Apply collision theory to explain temperature effects |
Class experiment: Place 30cm³ of 0.15M Na₂S₂O₃ in flasks at room temp, 30°C, 40°C, 50°C, 60°C. Mark cross on paper under flask. Add 5cm³ of 2M HCl, time until cross disappears. Record in Table 3.4. Plot time vs temperature and 1/time vs temperature graphs. Explain: higher temperature → more kinetic energy → more effective collisions.
|
0.15M Na₂S₂O₃, 2M HCl, conical flasks, water baths at different temperatures, paper with cross marked, stopwatch, thermometers
|
KLB Secondary Chemistry Form 4, Pages 70-73
|
|
2 | 2-3 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Surface Area on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain the effect of surface area on reaction rates -Investigate reaction of marble chips vs marble powder with HCl -Compare reaction rates using gas collection -Relate particle size to surface area and collision frequency |
Class experiment: React 2.5g marble chips with 50cm³ of 1M HCl, collect CO₂ gas using apparatus in Fig 3.10. Record gas volume every 30 seconds. Repeat with 2.5g marble powder. Record in Table 3.5. Plot both curves on same graph. Write equation: CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂. Explain: smaller particles → larger surface area → more collision sites → faster reaction.
|
Marble chips, marble powder, 1M HCl, gas collection apparatus, balance, conical flasks, measuring cylinders, graph paper
|
KLB Secondary Chemistry Form 4, Pages 73-76
|
|
2 | 4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Catalysts on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Explain effects of suitable catalysts on reaction rates -Investigate decomposition of hydrogen peroxide with and without catalyst -Define catalyst and explain how catalysts work -Compare activation energies in catalyzed vs uncatalyzed reactions |
Class experiment: Decompose 5cm³ of 20-volume H₂O₂ in 45cm³ water without catalyst, collect O₂ gas. Repeat adding 2g MnO₂ powder. Record gas volumes as in Fig 3.12. Compare rates and final mass of MnO₂. Write equation: 2H₂O₂ → 2H₂O + O₂. Define catalyst and explain how it lowers activation energy. Show energy diagrams for both pathways.
|
20-volume H₂O₂, MnO₂ powder, gas collection apparatus, balance, conical flasks, filter paper, measuring cylinders
|
KLB Secondary Chemistry Form 4, Pages 76-78
|
|
2 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Light and Pressure on Reaction Rate
|
By the end of the
lesson, the learner
should be able to:
- Identify reactions affected by light -Investigate effect of light on silver bromide decomposition -Explain effect of pressure on gaseous reactions -Give examples of photochemical reactions |
Teacher demonstration: Mix KBr and AgNO₃ solutions to form AgBr precipitate. Divide into 3 test tubes: place one in dark cupboard, one on bench, one in direct sunlight. Observe color changes after 10 minutes. Write equations. Discuss photochemical reactions: photography, Cl₂ + H₂, photosynthesis. Explain pressure effects on gaseous reactions through compression.
|
0.1M KBr, 0.05M AgNO₃, test tubes, dark cupboard, direct light source, examples of photochemical reactions
|
KLB Secondary Chemistry Form 4, Pages 78-80
|
|
3 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Reversible Reactions
|
By the end of the
lesson, the learner
should be able to:
- State examples of simple reversible reactions -Investigate heating of hydrated copper(II) sulphate -Write equations for reversible reactions using double arrows -Distinguish between reversible and irreversible reactions |
Class experiment: Heat CuSO₄·5H₂O crystals in boiling tube A, collect liquid in tube B as in Fig 3.15. Observe color changes: blue → white + colorless liquid. Pour liquid back into tube A, observe return to blue. Write equation with double arrows: CuSO₄·5H₂O ⇌ CuSO₄ + 5H₂O. Give other examples: NH₄Cl ⇌ NH₃ + HCl. Compare with irreversible reactions.
|
CuSO₄·5H₂O crystals, boiling tubes, delivery tube, heating source, test tube holder
|
KLB Secondary Chemistry Form 4, Pages 78-80
|
|
3 | 2-3 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Reversible Reactions
Chemical Equilibrium |
By the end of the
lesson, the learner
should be able to:
- State examples of simple reversible reactions -Investigate heating of hydrated copper(II) sulphate -Write equations for reversible reactions using double arrows -Distinguish between reversible and irreversible reactions - Explain chemical equilibrium -Define dynamic equilibrium -Investigate acid-base equilibrium using indicators -Explain why equilibrium appears static but is actually dynamic |
Class experiment: Heat CuSO₄·5H₂O crystals in boiling tube A, collect liquid in tube B as in Fig 3.15. Observe color changes: blue → white + colorless liquid. Pour liquid back into tube A, observe return to blue. Write equation with double arrows: CuSO₄·5H₂O ⇌ CuSO₄ + 5H₂O. Give other examples: NH₄Cl ⇌ NH₃ + HCl. Compare with irreversible reactions.
Experiment: Add 0.5M NaOH to 2cm³ in boiling tube with universal indicator. Add 0.5M HCl dropwise until green color (neutralization point). Continue adding base then acid alternately, observe color changes. Explain equilibrium as state where forward and backward reaction rates are equal. Use NH₄Cl ⇌ NH₃ + HCl example to show dynamic nature. Introduce equilibrium symbol ⇌. |
CuSO₄·5H₂O crystals, boiling tubes, delivery tube, heating source, test tube holder
0.5M NaOH, 0.5M HCl, universal indicator, boiling tubes, droppers, examples of equilibrium systems |
KLB Secondary Chemistry Form 4, Pages 78-80
KLB Secondary Chemistry Form 4, Pages 80-82 |
|
3 | 4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Chemical Equilibrium
|
By the end of the
lesson, the learner
should be able to:
- Explain chemical equilibrium -Define dynamic equilibrium -Investigate acid-base equilibrium using indicators -Explain why equilibrium appears static but is actually dynamic |
Experiment: Add 0.5M NaOH to 2cm³ in boiling tube with universal indicator. Add 0.5M HCl dropwise until green color (neutralization point). Continue adding base then acid alternately, observe color changes. Explain equilibrium as state where forward and backward reaction rates are equal. Use NH₄Cl ⇌ NH₃ + HCl example to show dynamic nature. Introduce equilibrium symbol ⇌.
|
0.5M NaOH, 0.5M HCl, universal indicator, boiling tubes, droppers, examples of equilibrium systems
|
KLB Secondary Chemistry Form 4, Pages 80-82
|
|
3 | 5 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Le Chatelier's Principle and Effect of Concentration
|
By the end of the
lesson, the learner
should be able to:
- State Le Chatelier's Principle -Explain effect of concentration changes on equilibrium position -Investigate bromine water equilibrium with acid/base addition -Apply Le Chatelier's Principle to predict equilibrium shifts |
Experiment: Add 2M NaOH dropwise to 20cm³ bromine water until colorless. Then add 2M HCl until excess, observe color return. Write equation: Br₂ + H₂O ⇌ HBr + HBrO. Explain Le Chatelier's Principle: "When change applied to system at equilibrium, system moves to oppose that change." Demonstrate with chromate/dichromate equilibrium: CrO₄²⁻ + H⁺ ⇌ Cr₂O₇²⁻ + H₂O.
|
Bromine water, 2M NaOH, 2M HCl, beakers, chromate/dichromate solutions for demonstration
|
KLB Secondary Chemistry Form 4, Pages 82-84
|
|
4 | 1 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Pressure and Temperature on Equilibrium
|
By the end of the
lesson, the learner
should be able to:
- Explain effect of pressure changes on equilibrium -Explain effect of temperature changes on equilibrium -Investigate NO₂/N₂O₄ equilibrium with temperature -Apply Le Chatelier's Principle to industrial processes |
Teacher demonstration: React copper turnings with concentrated HNO₃ to produce NO₂ gas in test tube. Heat and cool the tube, observe color changes: brown ⇌ pale yellow representing 2NO₂ ⇌ N₂O₄. Explain pressure effects using molecule count. Show Table 3.7 with pressure effects. Discuss temperature effects: heating favors endothermic direction, cooling favors exothermic direction. Use Table 3.8.
|
Copper turnings, concentrated HNO₃, test tubes, heating source, ice bath, gas collection apparatus, safety equipment
|
KLB Secondary Chemistry Form 4, Pages 84-87
|
|
4 | 2-3 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Effect of Pressure and Temperature on Equilibrium
Industrial Applications - Haber Process |
By the end of the
lesson, the learner
should be able to:
- Explain effect of pressure changes on equilibrium -Explain effect of temperature changes on equilibrium -Investigate NO₂/N₂O₄ equilibrium with temperature -Apply Le Chatelier's Principle to industrial processes - Apply equilibrium principles to Haber Process -Explain optimum conditions for ammonia manufacture -Calculate effect of temperature and pressure on yield -Explain role of catalysts in industrial processes |
Teacher demonstration: React copper turnings with concentrated HNO₃ to produce NO₂ gas in test tube. Heat and cool the tube, observe color changes: brown ⇌ pale yellow representing 2NO₂ ⇌ N₂O₄. Explain pressure effects using molecule count. Show Table 3.7 with pressure effects. Discuss temperature effects: heating favors endothermic direction, cooling favors exothermic direction. Use Table 3.8.
Analyze Haber Process: N₂ + 3H₂ ⇌ 2NH₃ ΔH = -92 kJ/mol. Apply Le Chatelier's Principle: high pressure favors forward reaction (4 molecules → 2 molecules), low temperature favors exothermic forward reaction but slows rate. Explain optimum conditions: 450°C temperature, 200 atmospheres pressure, iron catalyst. Discuss removal of NH₃ to shift equilibrium right. Economic considerations. |
Copper turnings, concentrated HNO₃, test tubes, heating source, ice bath, gas collection apparatus, safety equipment
Haber Process flow diagram, equilibrium data showing temperature/pressure effects on NH₃ yield, industrial catalyst information |
KLB Secondary Chemistry Form 4, Pages 84-87
KLB Secondary Chemistry Form 4, Pages 87-89 |
|
4 | 4 |
REACTION RATES AND REVERSIBLE REACTIONS
|
Industrial Applications - Contact Process
|
By the end of the
lesson, the learner
should be able to:
- Apply equilibrium principles to Contact Process -Explain optimum conditions for sulphuric acid manufacture -Compare different industrial equilibrium processes -Evaluate economic factors in industrial chemistry |
Analyze Contact Process: 2SO₂ + O₂ ⇌ 2SO₃ ΔH = -197 kJ/mol. Apply principles: high pressure favors forward reaction (3 molecules → 2 molecules), low temperature favors exothermic reaction. Explain optimum conditions: 450°C, atmospheric pressure, V₂O₅ catalyst, 96% conversion. Compare with Haber Process. Discuss catalyst choice and economic factors.
|
Contact Process flow diagram, comparison table with Haber Process, catalyst effectiveness data
|
KLB Secondary Chemistry Form 4, Pages 89
|
|
4 | 5 |
ELECTROCHEMISTRY
|
Redox Reactions and Oxidation Numbers
|
By the end of the
lesson, the learner
should be able to:
Define redox reactions in terms of electron transfer - State rules for assigning oxidation numbers - Calculate oxidation numbers in compounds - Identify oxidation and reduction processes |
Q/A: Review previous knowledge
- Experiment 4.1: Iron filings + copper(II) sulphate - Experiment 4.2: Iron(II) ions + hydrogen peroxide - Discussion on oxidation number rules with examples |
Iron filings, 1M CuSO₄, 1M FeSO₄, 2M NaOH, 20V H₂O₂, test tubes
|
KLB Secondary Chemistry Form 4, Pages 108-116
|
|
5 | 1 |
ELECTROCHEMISTRY
|
Oxidation Numbers in Naming and Redox Identification
|
By the end of the
lesson, the learner
should be able to:
Apply oxidation numbers to systematic naming - Use oxidation numbers to identify redox reactions - Distinguish oxidizing and reducing agents - Track electron movement in reactions |
Worked examples: Calculate oxidation numbers in complex compounds
- Practice IUPAC naming - Exercise 4.1: Identify redox reactions using oxidation numbers - Name compounds with variable oxidation states |
Compound charts, calculators, student books, practice exercises
|
KLB Secondary Chemistry Form 4, Pages 109-116
|
|
5 | 2-3 |
ELECTROCHEMISTRY
|
Displacement Reactions - Metals and Halogens
Electrochemical Cells and Cell Diagrams Standard Electrode Potentials |
By the end of the
lesson, the learner
should be able to:
Explain displacement reactions using electron transfer - Arrange metals and halogens by reactivity - Predict displacement reactions - Compare oxidizing powers of halogens Define electrode potential and EMF - Describe electrochemical cell components - Draw cell diagrams using correct notation - Explain electron flow and salt bridge function |
Experiment 4.3: Metal displacement reactions - systematic testing
- Experiment 4.4: Halogen displacement (FUME CUPBOARD) - Tabulate results and arrange by reactivity Experiment 4.5: Set up Zn/Cu cell and other metal combinations - Measure EMF values - Practice writing cell notation - Learn conventional representation methods |
Various metals (Ca, Mg, Zn, Fe, Pb, Cu), metal salt solutions, halogens (Cl₂, Br₂, I₂), halide solutions
Metal electrodes, 1M metal salt solutions, voltmeters, salt bridges, connecting wires Standard electrode potential table, diagrams, charts showing standard conditions |
KLB Secondary Chemistry Form 4, Pages 116-122
KLB Secondary Chemistry Form 4, Pages 123-128 |
|
5 | 4 |
ELECTROCHEMISTRY
|
Calculating Cell EMF and Predicting Reactions
|
By the end of the
lesson, the learner
should be able to:
Calculate EMF using standard electrode potentials - Predict reaction spontaneity using EMF - Solve numerical problems on cell EMF - Apply EMF calculations practically |
Worked examples: Calculate EMF for various cells
- Practice EMF calculations - Exercise 4.2 & 4.3: Cell EMF and reaction feasibility problems - Distinguish spontaneous from non-spontaneous reactions |
Calculators, electrode potential data, worked examples, practice problems
|
KLB Secondary Chemistry Form 4, Pages 133-137
|
|
5 | 5 |
ELECTROCHEMISTRY
|
Types of Electrochemical Cells
|
By the end of the
lesson, the learner
should be able to:
Describe functioning of primary and secondary cells - Compare different cell types - Explain fuel cell operation - State applications of electrochemical cells |
Study dry cell (Le Clanche) and lead-acid accumulator
- Hydrogen-oxygen fuel cell operation - Compare cell types and applications - Discussion on advantages/disadvantages |
Cell diagrams, sample batteries, charts showing cell applications
|
KLB Secondary Chemistry Form 4, Pages 138-141
|
|
6 | 1 |
ELECTROCHEMISTRY
|
Electrolysis of Aqueous Solutions I
Electrolysis of Aqueous Solutions II |
By the end of the
lesson, the learner
should be able to:
Define electrolysis and preferential discharge - Investigate electrolysis of dilute sodium chloride - Compare dilute vs concentrated solution effects - Test products formed |
Experiment 4.6(a): Electrolysis of dilute NaCl
- Experiment 4.6(b): Electrolysis of brine - Test gases evolved - Compare results and explain differences |
Dilute and concentrated NaCl solutions, carbon electrodes, gas collection tubes, test equipment
U-tube apparatus, 2M H₂SO₄, 0.5M MgSO₄, platinum/carbon electrodes, gas syringes |
KLB Secondary Chemistry Form 4, Pages 141-146
|
|
6 | 2-3 |
ELECTROCHEMISTRY
|
Effect of Electrode Material on Electrolysis
|
By the end of the
lesson, the learner
should be able to:
Compare inert vs reactive electrodes - Investigate electrode dissolution - Explain electrode selection importance - Analyze copper purification process |
Experiment 4.9: Electrolysis of CuSO₄ with carbon vs copper electrodes
- Weigh electrodes before/after - Observe color changes - Discussion on electrode effects |
Copper and carbon electrodes, 3M CuSO₄ solution, accurate balance, beakers, connecting wires
|
KLB Secondary Chemistry Form 4, Pages 141-148
|
|
6 | 4 |
ELECTROCHEMISTRY
|
Factors Affecting Electrolysis
|
By the end of the
lesson, the learner
should be able to:
Identify factors affecting preferential discharge - Explain electrochemical series influence - Discuss concentration and electrode effects - Predict electrolysis products |
Review electrochemical series and discharge order
- Analysis of concentration effects on product formation - Summary of all factors affecting electrolysis - Practice prediction problems |
Electrochemical series chart, summary tables, practice exercises, student books
|
KLB Secondary Chemistry Form 4, Pages 153-155
|
|
6 | 5 |
ELECTROCHEMISTRY
|
Applications of Electrolysis I
|
By the end of the
lesson, the learner
should be able to:
Describe electrolytic extraction of reactive metals - Explain electroplating process - Apply electrolysis principles to metal coating - Design electroplating setup |
Discussion: Extraction of Na, Mg, Al by electrolysis
- Practical: Electroplate iron nail with copper - Calculate plating requirements - Industrial applications |
Iron nails, copper electrodes, CuSO₄ solution, power supply, industrial process diagrams
|
KLB Secondary Chemistry Form 4, Pages 155-157
|
|
7 | 1 |
ELECTROCHEMISTRY
|
Applications of Electrolysis II
|
By the end of the
lesson, the learner
should be able to:
Describe manufacture of NaOH and Cl₂ from brine - Explain mercury cell operation - Analyze industrial electrolysis processes - Discuss environmental considerations |
Study mercury cell for NaOH production
- Flow chart analysis of industrial processes - Discussion on applications and environmental impact - Purification of metals |
Flow charts, mercury cell diagrams, environmental impact data, industrial case studies
|
KLB Secondary Chemistry Form 4, Pages 155-157
|
|
7 | 2-3 |
ELECTROCHEMISTRY
|
Applications of Electrolysis II
Faraday's Laws and Quantitative Electrolysis |
By the end of the
lesson, the learner
should be able to:
Describe manufacture of NaOH and Cl₂ from brine - Explain mercury cell operation - Analyze industrial electrolysis processes - Discuss environmental considerations State Faraday's laws of electrolysis - Define Faraday constant - Calculate mass deposited in electrolysis - Relate electricity to amount of substance |
Study mercury cell for NaOH production
- Flow chart analysis of industrial processes - Discussion on applications and environmental impact - Purification of metals Experiment 4.10: Quantitative electrolysis of CuSO₄ - Measure mass vs electricity passed - Calculate Faraday constant - Verify Faraday's laws |
Flow charts, mercury cell diagrams, environmental impact data, industrial case studies
Accurate balance, copper electrodes, CuSO₄ solution, ammeter, timer, calculators |
KLB Secondary Chemistry Form 4, Pages 155-157
KLB Secondary Chemistry Form 4, Pages 161-164 |
|
7 | 4 |
ELECTROCHEMISTRY
|
Faraday's Laws and Quantitative Electrolysis
|
By the end of the
lesson, the learner
should be able to:
State Faraday's laws of electrolysis - Define Faraday constant - Calculate mass deposited in electrolysis - Relate electricity to amount of substance |
Experiment 4.10: Quantitative electrolysis of CuSO₄
- Measure mass vs electricity passed - Calculate Faraday constant - Verify Faraday's laws |
Accurate balance, copper electrodes, CuSO₄ solution, ammeter, timer, calculators
|
KLB Secondary Chemistry Form 4, Pages 161-164
|
|
7 | 5 |
ELECTROCHEMISTRY
|
Electrolysis Calculations I
|
By the end of the
lesson, the learner
should be able to:
Calculate mass of products from electrolysis - Determine volumes of gases evolved - Apply Faraday's laws to numerical problems - Solve basic electrolysis calculations |
Worked examples: Mass and volume calculations
- Problems involving different ions - Practice with Faraday constant - Basic numerical problems |
Calculators, worked examples, practice problems, gas volume data, Faraday constant
|
KLB Secondary Chemistry Form 4, Pages 161-164
|
|
8 | 1 |
ELECTROCHEMISTRY
|
Electrolysis Calculations II
|
By the end of the
lesson, the learner
should be able to:
Determine charge on ions from electrolysis data - Calculate current-time relationships - Solve complex multi-step problems - Apply concepts to industrial situations |
Complex problems: Determine ionic charges
- Current-time-mass relationships - Multi-step calculations - Industrial calculation examples |
Calculators, complex problem sets, industrial data, student books
|
KLB Secondary Chemistry Form 4, Pages 161-164
|
|
8 | 2-3 |
ELECTROCHEMISTRY
|
Electrolysis Calculations II
Advanced Applications and Problem Solving |
By the end of the
lesson, the learner
should be able to:
Determine charge on ions from electrolysis data - Calculate current-time relationships - Solve complex multi-step problems - Apply concepts to industrial situations Solve examination-type electrochemistry problems - Apply all concepts in integrated problems - Analyze real-world electrochemical processes - Practice complex calculations |
Complex problems: Determine ionic charges
- Current-time-mass relationships - Multi-step calculations - Industrial calculation examples Comprehensive problems combining redox, cells, and electrolysis - Past examination questions - Industrial case study analysis - Advanced problem-solving techniques |
Calculators, complex problem sets, industrial data, student books
Past papers, comprehensive problem sets, industrial case studies, calculators |
KLB Secondary Chemistry Form 4, Pages 161-164
KLB Secondary Chemistry Form 4, Pages 108-164 |
|
8 | 4 |
ORGANIC CHEMISTRY II
|
Introduction to Alkanols and Nomenclature
|
By the end of the
lesson, the learner
should be able to:
Define alkanols and identify functional group - Apply nomenclature rules for alkanols - Draw structural formulae of simple alkanols - Compare alkanols with corresponding alkanes |
Q/A: Review alkanes, alkenes from Form 3
- Study functional group -OH concept - Practice naming alkanols using IUPAC rules - Complete Table 6.2 - alkanol structures |
Molecular models, Table 6.1 and 6.2, alkanol structure charts, student books
|
KLB Secondary Chemistry Form 4, Pages 167-170
|
|
8 | 5 |
ORGANIC CHEMISTRY II
|
Isomerism in Alkanols
|
By the end of the
lesson, the learner
should be able to:
Explain positional and chain isomerism - Draw isomers of given alkanols - Name different isomeric forms - Classify isomers as primary, secondary, or tertiary |
Study positional isomerism examples (propan-1-ol vs propan-2-ol)
- Practice drawing chain isomers - Exercises on isomer identification and naming - Discussion on structural differences |
Isomer structure charts, molecular models, practice worksheets, student books
|
KLB Secondary Chemistry Form 4, Pages 170-171
|
|
9 |
MID TERM BREAK |
|||||||
10 | 1 |
ORGANIC CHEMISTRY II
|
Laboratory Preparation of Ethanol
Industrial Preparation and Physical Properties |
By the end of the
lesson, the learner
should be able to:
Describe fermentation process - Prepare ethanol in laboratory - Write equation for glucose fermentation - Explain role of yeast and conditions needed |
Experiment 6.1: Fermentation of sugar solution with yeast
- Set up apparatus for 2-3 days - Observe gas evolution - Test for CO₂ with lime water - Smell final product |
Sugar, yeast, warm water, conical flask, delivery tube, lime water, thermometer
Table 6.3, industrial process diagrams, ethene structure models, property comparison charts |
KLB Secondary Chemistry Form 4, Pages 171-172
|
|
10 | 2-3 |
ORGANIC CHEMISTRY II
|
Chemical Properties of Alkanols I
Chemical Properties of Alkanols II |
By the end of the
lesson, the learner
should be able to:
Test reactions of ethanol with various reagents - Write equations for ethanol reactions - Identify products formed - Explain reaction mechanisms Investigate oxidation and esterification reactions - Test oxidizing agents on ethanol - Prepare esters from alkanols - Explain dehydration reactions |
Experiment 6.2: Test ethanol with burning, universal indicator, sodium metal, acids
- Record observations in Table 6.4 - Write balanced equations - Discuss reaction types Complete Experiment 6.2: Test with acidified K₂Cr₂O₇ and KMnO₄ - Observe color changes - Esterification with ethanoic acid - Study dehydration conditions |
Ethanol, sodium metal, universal indicator, concentrated H₂SO₄, ethanoic acid, test tubes
Acidified potassium chromate/manganate, ethanoic acid, concentrated H₂SO₄, heating apparatus |
KLB Secondary Chemistry Form 4, Pages 173-175
KLB Secondary Chemistry Form 4, Pages 173-176 |
|
10 | 4 |
ORGANIC CHEMISTRY II
|
Uses of Alkanols and Health Effects
Introduction to Alkanoic Acids |
By the end of the
lesson, the learner
should be able to:
State various uses of alkanols - Explain health effects of alcohol consumption - Discuss methylated spirits - Analyze alcohol in society |
Discussion on alkanol applications as solvents, fuels, antiseptics
- Health effects of alcohol consumption - Methylated spirits composition - Social implications |
Charts showing alkanol uses, health impact data, methylated spirit samples, discussion materials
Alkanoic acid structure charts, Table 6.5 and 6.6, molecular models, student books |
KLB Secondary Chemistry Form 4, Pages 176-177
|
|
10 | 5 |
ORGANIC CHEMISTRY II
|
Laboratory Preparation of Ethanoic Acid
|
By the end of the
lesson, the learner
should be able to:
Prepare ethanoic acid by oxidation - Write equations for preparation - Set up oxidation apparatus - Identify product by testing |
Experiment 6.3: Oxidize ethanol using acidified KMnO₄
- Set up heating and distillation apparatus - Collect distillate at 118°C - Test product properties |
Ethanol, KMnO₄, concentrated H₂SO₄, distillation apparatus, thermometer, round-bottom flask
|
KLB Secondary Chemistry Form 4, Pages 179-180
|
|
11 | 1 |
ORGANIC CHEMISTRY II
|
Physical and Chemical Properties of Alkanoic Acids
|
By the end of the
lesson, the learner
should be able to:
Investigate chemical reactions of ethanoic acid - Test with various reagents - Write chemical equations - Analyze acid strength |
Experiment following Table 6.8: Test ethanoic acid with indicators, metals, carbonates, bases
- Record observations - Write equations - Discuss weak acid behavior |
2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes
|
KLB Secondary Chemistry Form 4, Pages 180-182
|
|
11 | 2-3 |
ORGANIC CHEMISTRY II
|
Physical and Chemical Properties of Alkanoic Acids
Esterification and Uses of Alkanoic Acids |
By the end of the
lesson, the learner
should be able to:
Investigate chemical reactions of ethanoic acid - Test with various reagents - Write chemical equations - Analyze acid strength Explain ester formation process - Write esterification equations - State uses of alkanoic acids - Prepare simple esters |
Experiment following Table 6.8: Test ethanoic acid with indicators, metals, carbonates, bases
- Record observations - Write equations - Discuss weak acid behavior Complete esterification experiments - Study concentrated H₂SO₄ as catalyst - Write general esterification equation - Discuss applications in food, drugs, synthetic fibres |
2M ethanoic acid, universal indicator, Mg strip, Na₂CO₃, NaOH, phenolphthalein, test tubes
Ethanoic acid, ethanol, concentrated H₂SO₄, test tubes, heating apparatus, cold water |
KLB Secondary Chemistry Form 4, Pages 180-182
KLB Secondary Chemistry Form 4, Pages 182-183 |
|
11 | 4 |
ORGANIC CHEMISTRY II
|
Introduction to Detergents and Soap Preparation
|
By the end of the
lesson, the learner
should be able to:
Define detergents and classify types - Explain saponification process - Prepare soap in laboratory - Compare soapy and soapless detergents |
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH - Add salt for salting out - Test soap formation |
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
|
KLB Secondary Chemistry Form 4, Pages 183-186
|
|
11 | 5 |
ORGANIC CHEMISTRY II
|
Introduction to Detergents and Soap Preparation
|
By the end of the
lesson, the learner
should be able to:
Define detergents and classify types - Explain saponification process - Prepare soap in laboratory - Compare soapy and soapless detergents |
Study soap vs soapless detergent differences
- Experiment 6.5: Saponify castor oil with NaOH - Add salt for salting out - Test soap formation |
Castor oil, 4M NaOH, NaCl, evaporating dish, water bath, stirring rod, filter paper
|
KLB Secondary Chemistry Form 4, Pages 183-186
|
|
12 | 1 |
ORGANIC CHEMISTRY II
|
Mode of Action of Soap and Hard Water Effects
|
By the end of the
lesson, the learner
should be able to:
Explain soap molecule structure - Describe cleaning mechanism - Investigate hard water effects - Compare soap performance in different waters |
Study hydrophobic and hydrophilic ends
- Demonstrate micelle formation - Test soap in distilled vs hard water - Observe scum formation - Write precipitation equations |
Soap samples, distilled water, hard water (CaCl₂/MgSO₄ solutions), test tubes, demonstration materials
|
KLB Secondary Chemistry Form 4, Pages 186-188
|
|
12 | 2-3 |
ORGANIC CHEMISTRY II
|
Soapless Detergents and Environmental Effects
|
By the end of the
lesson, the learner
should be able to:
Explain soapless detergent preparation - Compare advantages/disadvantages - Discuss environmental impact - Analyze pollution effects |
Study alkylbenzene sulphonate preparation
- Compare Table 6.9 - soap vs soapless - Discussion on eutrophication and biodegradability - Environmental awareness |
Flow charts of detergent manufacture, Table 6.9, environmental impact data, sample detergents
|
KLB Secondary Chemistry Form 4, Pages 188-191
|
|
12 | 4 |
ORGANIC CHEMISTRY II
|
Introduction to Polymers and Addition Polymerization
|
By the end of the
lesson, the learner
should be able to:
Define polymers, monomers, and polymerization - Explain addition polymerization - Draw polymer structures - Calculate polymer properties |
Study polymer concept and terminology
- Practice drawing addition polymers from monomers - Examples: polyethene, polypropene, PVC - Calculate molecular masses |
Polymer samples, monomer structure charts, molecular models, calculators, polymer formation diagrams
|
KLB Secondary Chemistry Form 4, Pages 191-195
|
|
12 | 5 |
ORGANIC CHEMISTRY II
|
Addition Polymers - Types and Properties
|
By the end of the
lesson, the learner
should be able to:
Identify different addition polymers - Draw structures from monomers - Name common polymers - Relate structure to properties |
Study polystyrene, PTFE, perspex formation
- Practice identifying monomers from polymer structures - Work through polymer calculation examples - Properties analysis |
Various polymer samples, structure identification exercises, calculation worksheets, Table 6.10
|
KLB Secondary Chemistry Form 4, Pages 195-197
|
|
13 | 1 |
ORGANIC CHEMISTRY II
|
Condensation Polymerization and Natural Polymers
|
By the end of the
lesson, the learner
should be able to:
Explain condensation polymerization - Compare with addition polymerization - Study natural polymers - Analyze nylon formation |
Study nylon 6,6 formation from diamine and dioic acid
- Natural polymers: starch, protein, rubber - Vulcanization process - Compare synthetic vs natural |
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples
|
KLB Secondary Chemistry Form 4, Pages 197-200
|
|
13 | 2-3 |
ORGANIC CHEMISTRY II
|
Condensation Polymerization and Natural Polymers
Polymer Properties and Applications |
By the end of the
lesson, the learner
should be able to:
Explain condensation polymerization - Compare with addition polymerization - Study natural polymers - Analyze nylon formation Compare advantages and disadvantages of synthetic polymers - State uses of different polymers - Discuss environmental concerns - Analyze polymer selection |
Study nylon 6,6 formation from diamine and dioic acid
- Natural polymers: starch, protein, rubber - Vulcanization process - Compare synthetic vs natural Study Table 6.10 - polymer uses - Advantages: strength, lightness, moldability - Disadvantages: non-biodegradability, toxic gases - Application analysis |
Nylon samples, rubber samples, condensation reaction diagrams, natural polymer examples
Table 6.10, polymer application samples, environmental impact studies, product examples |
KLB Secondary Chemistry Form 4, Pages 197-200
KLB Secondary Chemistry Form 4, Pages 200-201 |
|
13 | 4 |
ORGANIC CHEMISTRY II
|
Polymer Properties and Applications
|
By the end of the
lesson, the learner
should be able to:
Compare advantages and disadvantages of synthetic polymers - State uses of different polymers - Discuss environmental concerns - Analyze polymer selection |
Study Table 6.10 - polymer uses
- Advantages: strength, lightness, moldability - Disadvantages: non-biodegradability, toxic gases - Application analysis |
Table 6.10, polymer application samples, environmental impact studies, product examples
|
KLB Secondary Chemistry Form 4, Pages 200-201
|
|
13 | 5 |
ORGANIC CHEMISTRY II
|
Comprehensive Problem Solving and Integration
|
By the end of the
lesson, the learner
should be able to:
Solve complex problems involving alkanols and acids - Apply knowledge to practical situations - Integrate polymer concepts - Practice examination questions |
Worked examples on organic synthesis
- Problem-solving on isomers, reactions, polymers - Integration of all unit concepts - Practice examination-style questions |
Comprehensive problem sets, past examination papers, calculators, organic chemistry summary charts
|
KLB Secondary Chemistry Form 4, Pages 167-201
|
Your Name Comes Here