If this scheme pleases you, click here to download.
WK | LSN | TOPIC | SUB-TOPIC | OBJECTIVES | T/L ACTIVITIES | T/L AIDS | REFERENCE | REMARKS |
---|---|---|---|---|---|---|---|---|
2 | 1 |
METALS
|
Ores of some metals.
|
By the end of the
lesson, the learner
should be able to:
Name the chief ores of some metals. |
Exposition and brief discussion. |
|
K.L.B. BK IV
Pages 168-9 |
|
2 | 2 |
METALS
|
Ores of some metals.
|
By the end of the
lesson, the learner
should be able to:
Name the chief ores of some metals. |
Exposition and brief discussion. |
|
K.L.B. BK IV
Pages 168-9 |
|
2 | 3-4 |
METALS
|
Occurrence and extraction of sodium.
Occurrence and extraction of aluminium. |
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of sodium. Describe occurrence and extraction of aluminium. |
Oral questions on electrolysis and equations at electrodes.
Brief discussion on occurrence and extraction. Brief discussion. Write relevant chemical equations. |
Chart: Down?s cell.
student book |
K.L.B. BK IV
Pages 170-171 K.L.B. BK IV Pages 171-3 |
|
2 | 5 |
METALS
|
Occurrence and extraction of aluminium.
|
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of aluminium. |
Brief discussion.
Write relevant chemical equations. |
student book
|
K.L.B. BK IV
Pages 171-3 |
|
3 | 1 |
METALS
|
Occurrence and extraction of iron.
|
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of iron. |
Brief discussion.
Write relevant chemical equations. |
Chart: Blast furnace.
|
K.L.B. BK IV
Pages 173-5 |
|
3 | 2 |
METALS
|
Occurrence and extraction of iron.
|
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of iron. |
Brief discussion.
Write relevant chemical equations. |
Chart: Blast furnace.
|
K.L.B. BK IV
Pages 173-5 |
|
3 | 3-4 |
METALS
|
Occurrence and extraction of zinc.
|
By the end of the
lesson, the learner
should be able to:
Describe occurrence and extraction of zinc by electrolysis and reduction methods. |
Brief discussion.
Write relevant chemical equations. |
Flow chart: extraction of Zinc.
|
K.L.B. BK IV
Pages 175-9 |
|
3 | 5 |
METALS
|
Extraction of lead.
|
By the end of the
lesson, the learner
should be able to:
Explain how lead is extracted. |
Q/A & brief discussion.
Write balanced chemical equations leading to extraction of lead. |
Flow chart: extraction of lead.
|
K.L.B. BK IV
Pages 179-80 |
|
4 | 1 |
METALS
|
Occurrence and extraction of copper.
|
By the end of the
lesson, the learner
should be able to:
Describe extraction of copper. |
Q/A & brief discussion.
Write balanced chemical equations leading to extraction of copper. |
Flow chart: extraction of copper.
|
K.L.B. BK IV
Pages 181-183 |
|
4 | 2 |
METALS
|
Occurrence and extraction of copper.
|
By the end of the
lesson, the learner
should be able to:
Describe extraction of copper. |
Q/A & brief discussion.
Write balanced chemical equations leading to extraction of copper. |
Flow chart: extraction of copper.
|
K.L.B. BK IV
Pages 181-183 |
|
4 | 3-4 |
METALS
|
Occurrence and extraction of copper.
Physical properties of some metals. |
By the end of the
lesson, the learner
should be able to:
Describe extraction of copper. State general properties of metals. Explain the difference in physical properties of metals. |
Q/A & brief discussion.
Write balanced chemical equations leading to extraction of copper. Compare physical properties of some metals as summarized in a chart. Q/A & discussion based on physical properties. |
Flow chart: extraction of copper.
student book |
K.L.B. BK IV
Pages 181-183 K.L.B. BK IV Pages 183-4 |
|
4 | 5 |
METALS
|
Reaction of metals with oxygen.
|
By the end of the
lesson, the learner
should be able to:
Explain effect of burning metals in air. |
Teacher demonstration / Group experiments.
Burning some metals in air. Write relevant equations. Brief discussion. |
Common lab. metals.
|
K.L.B. BK IV
Pages 184-6 |
|
5 | 1 |
METALS
|
Reaction of metals with cold water and steam.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of metals with cold water and steam. Arrange the metals in order of reactivity with cold water and steam. |
Class experiments:
Investigate reaction of some metals with cold water and steam. Analyse the results. |
Metals: Al, Zn, Fe, Cu.
|
K.L.B. BK IV
Pages 186-9 |
|
5 | 2 |
METALS
|
Reaction of metals with cold water and steam.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of metals with cold water and steam. Arrange the metals in order of reactivity with cold water and steam. |
Class experiments:
Investigate reaction of some metals with cold water and steam. Analyse the results. |
Metals: Al, Zn, Fe, Cu.
|
K.L.B. BK IV
Pages 186-9 |
|
5 | 3-4 |
METALS
|
Reaction of metals with cold water and steam.
|
By the end of the
lesson, the learner
should be able to:
Describe reaction of metals with cold water and steam. Arrange the metals in order of reactivity with cold water and steam. |
Class experiments:
Investigate reaction of some metals with cold water and steam. Analyse the results. |
Metals: Al, Zn, Fe, Cu.
|
K.L.B. BK IV
Pages 186-9 |
|
5 | 5 |
METALS
|
Reaction of metals with chlorine.
|
By the end of the
lesson, the learner
should be able to:
Describe the reaction of metals with chlorine. |
Teacher demonstration in a fume cupboard / in the open.
Investigate reaction of metals with chorine Write corresponding equations. |
Metals: Al, Zn, Fe, Cu.
|
K.L.B. BK IV
Pages 189-191 |
|
6 | 1 |
METALS
|
Reaction of metals with acids.
|
By the end of the
lesson, the learner
should be able to:
Describe and explain reaction of metals with acids. |
Group experiments: investigate reaction of metals with dilute acids.
Teacher demonstration: investigate reaction of metals with concentrated acids. Discuss the observations made and write relevant chemical equations. |
Metals: Al, Zn, Fe, Cu.
Acids; HCl, HNO3, H2SO4. |
K.L.B. BK IV
Pages 191-4 |
|
6 | 2 |
METALS
|
Reaction of metals with acids.
|
By the end of the
lesson, the learner
should be able to:
Describe and explain reaction of metals with acids. |
Group experiments: investigate reaction of metals with dilute acids.
Teacher demonstration: investigate reaction of metals with concentrated acids. Discuss the observations made and write relevant chemical equations. |
Metals: Al, Zn, Fe, Cu.
Acids; HCl, HNO3, H2SO4. |
K.L.B. BK IV
Pages 191-4 |
|
6 | 3-4 |
METALS
|
Reaction of metals with acids.
|
By the end of the
lesson, the learner
should be able to:
Describe and explain reaction of metals with acids. |
Group experiments: investigate reaction of metals with dilute acids.
Teacher demonstration: investigate reaction of metals with concentrated acids. Discuss the observations made and write relevant chemical equations. |
Metals: Al, Zn, Fe, Cu.
Acids; HCl, HNO3, H2SO4. |
K.L.B. BK IV
Pages 191-4 |
|
6 | 5 |
METALS
|
Reaction of metals with acids.
|
By the end of the
lesson, the learner
should be able to:
Describe and explain reaction of metals with acids. |
Group experiments: investigate reaction of metals with dilute acids.
Teacher demonstration: investigate reaction of metals with concentrated acids. Discuss the observations made and write relevant chemical equations. |
Metals: Al, Zn, Fe, Cu.
Acids; HCl, HNO3, H2SO4. |
K.L.B. BK IV
Pages 191-4 |
|
7 | 1 |
METALS
|
Uses of metals.
|
By the end of the
lesson, the learner
should be able to:
State uses of some metals and alloys. |
Q/A & brief discussion;
Uses of Sodium, Aluminium, Zinc, Iron and Copper & some alloys. |
student book
|
K.L.B. BK IV
Pages 194-7 |
|
7 | 2 |
METALS
|
Environmental effects of extraction of metals.
|
By the end of the
lesson, the learner
should be able to:
Identify some environmental effects of extraction of metals. |
Oral questions and open discussion.
Assignment / Topic review. |
student book
|
K.L.B. BK IV
Pages 197-8 |
|
7 | 3-4 |
METALS
ORGANIC CHEMISTRY II (ALKANES & ALKANOIC ACIDS) |
Environmental effects of extraction of metals.
Soap preparation in the lab. |
By the end of the
lesson, the learner
should be able to:
Identify some environmental effects of extraction of metals. Describe soap preparation in the lab. |
Oral questions and open discussion.
Assignment / Topic review. Group experiments, Answer questions based on the experiments already carried out. |
student book
|
K.L.B. BK IV
Pages 197-8 K.L.B. BK IV Pages 227-230 |
|
7 | 5 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Soap preparation in the lab.
|
By the end of the
lesson, the learner
should be able to:
Describe soap preparation in the lab. |
Group experiments,
Answer questions based on the experiments already carried out. |
student book
|
K.L.B. BK IV
Pages 227-230 |
|
8 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Cleaning action of soap.
|
By the end of the
lesson, the learner
should be able to:
Describe the nature of a soap molecule. Explain the mode of action in cleaning. |
Expository and descriptive approaches.
Answer oral questions. |
student book
|
K.L.B. BK IV
Pages 230-232 |
|
8 | 2 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Effects of hard / soft water on soap.
|
By the end of the
lesson, the learner
should be able to:
Explain the effects of hard/ soft water on soap. |
Group experiments: form soap lather in different solutions.
Deduce the effects of hard/ soft water on soap. |
Distilled water, tap water, rainwater, sodium chloride solution.
Calcium nitrate, Zinc Sulphate, etc. |
K.L.B. BK IV
Pages 232-235 |
|
8 | 3-4 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Effects of hard / soft water on soap.
Soapless detergents. |
By the end of the
lesson, the learner
should be able to:
Explain the effects of hard/ soft water on soap. Prepare soapless detergents in the lab. State merits of soapless detergents over soaps. |
Group experiments: form soap lather in different solutions.
Deduce the effects of hard/ soft water on soap. Teacher demonsration. Brief discussion. |
Distilled water, tap water, rainwater, sodium chloride solution.
Calcium nitrate, Zinc Sulphate, etc. student book |
K.L.B. BK IV
Pages 232-235 K.L.B. BK IV Pages 235-238 |
|
9 |
Midterm |
|||||||
10 | 1 |
ORGANIC CHEMISTRY II
(ALKANES & ALKANOIC ACIDS)
|
Polymers and polymerization.
|
By the end of the
lesson, the learner
should be able to:
Explain the concepts additional and condensation polymerization as methods of making synthetic polymers. Identify some products of polymerization. State merits and demerits of synthetic polymers over natural materials. |
Teacher exposes and explains new concepts. Detailed discussion. Assignment. |
student book
|
K.L.B. BK IV
Pages 238-242 |
|
10 | 2 |
RADIOACTIVITY
|
Definition of radioactivity.
|
By the end of the
lesson, the learner
should be able to:
Define radioactivity, a nuclide and radioactive decay. Differentiate between natural and artificial radioactivity. |
Q/A: Review the atomic structure. Exposition: symbolic representation of an atom / nucleus. Exposition: meaning of radioactivity and radioactive decay. Discussion: artificial and natural radioactivity. |
student book
|
K.L.B. BK IV
Pages 249-251 |
|
10 | 3-4 |
RADIOACTIVITY
|
Definition of radioactivity.
Alpha particles. |
By the end of the
lesson, the learner
should be able to:
Define radioactivity, a nuclide and radioactive decay. Differentiate between natural and artificial radioactivity. State properties of alpha particles. Describe methods of detecting alpha particles. |
Q/A: Review the atomic structure. Exposition: symbolic representation of an atom / nucleus. Exposition: meaning of radioactivity and radioactive decay. Discussion: artificial and natural radioactivity. Q/A: position of helium in the periodic table. Expository approach: |
student book
|
K.L.B. BK IV
Pages 249-251 K.L.B. BK IV Pages 251-253 |
|
10 | 5 |
RADIOACTIVITY
|
Alpha particles.
|
By the end of the
lesson, the learner
should be able to:
State properties of alpha particles. Describe methods of detecting alpha particles. |
Q/A: position of helium in the periodic table.
Expository approach: |
student book
|
K.L.B. BK IV
Pages 251-253 |
|
11 | 1 |
RADIOACTIVITY
|
Equations involving alpha particles.
Beta particles. Gamma rays. |
By the end of the
lesson, the learner
should be able to:
Write down and balance equations involving alpha particles. |
Q/A: Review atomic and mass numbers.
Examples of balanced equations. Supervised practice. |
student book
|
K.L.B. BK IV
Page 257 |
|
11 | 2 |
RADIOACTIVITY
|
Radioactive
Half-Life.
|
By the end of the
lesson, the learner
should be able to:
Define the term radioactive half-life. Solve problems relating to half ?life |
Teacher demonstration: Dice experiment.
Exposition of the term half-life. Worked examples. Written exercise |
Dice.
|
K.L.B. BK IV
Pages 253-4 |
|
11 | 3-4 |
RADIOACTIVITY
|
Radioactive decay curve.
Nuclear fusion and nuclear fission. Applications of radioactivity. |
By the end of the
lesson, the learner
should be able to:
Plot a radioactive decay curve to deduce the half ?life from the curve. Differentiate between nuclear fusion and nuclear fission. Describe applications of radioactivity. |
Drawing a radioactive decay curve inferring the half-life of the sample from the graph.
Exposition of new concepts accompanied by nuclear equations. Brief discussion: Carbon dating, detecting leakage, medication, agriculture, industry; effect of static charges, etc. |
Graph papers.
student book |
K.L.B. BK IV
Pages 254-5 K.L.B. BK IV Pages 259-260 |
Your Name Comes Here