Home






SCHEME OF WORK
Chemistry
Form 2 2025
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN TOPIC SUB-TOPIC OBJECTIVES T/L ACTIVITIES T/L AIDS REFERENCE REMARKS
2 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Atomic and mass numbers.
By the end of the lesson, the learner should be able to:


Name the subatomic particles in an atom.
Define atomic number and mass number of an atom.
Represent atomic and mass numbers symbolically.
Exposition on new concepts;
Probing questions;
Brief discussion.
text book
K.L.B.
BOOK II

PP. 1-3
2 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
First twenty elements of the periodic table.
Isotopes.
By the end of the lesson, the learner should be able to:
List the first twenty elements of the periodic table.
Write chemical symbols of the first twenty elements of the periodic table.
Define isotopes.
Give examples of isotopes.
Expository approach: referring to the periodic table, teacher exposes the first twenty elements.
Writing down a list of first twenty elements of the periodic table.

Exposition of definition and examples of isotopes.
Giving examples of isotopes.
Periodic table.
Periodic table.
K.L.B.
BOOK II

PP. 1-3
K.L.B.
BOOK II
P. 4





PP. 5-8
2 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration.
By the end of the lesson, the learner should be able to:
Represent isotopes symbolically.
Define an energy level.
Describe electronic configuration in an atom.
Exposition ? teacher exposes new concepts about electronic configuration.
Written exercise.
Periodic table.
K.L.B.
BOOK II
P. 4





PP. 5-9
2 5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration in diagrams.
By the end of the lesson, the learner should be able to:
Represent electronic configuration diagrammatically.
Supervised practice;
Written exercise.
text book
K.L.B.
BOOK II
PP. 5-8
3 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Periods of the periodic table.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Exposition ? Definition of a period.
Q/A: Examples of elements of the same period.
Periodic table.
K.L.B. BOOK IIP. 9
3 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Groups of the periodic table.
R.M.M. and isotopes.
By the end of the lesson, the learner should be able to:
Identify elements of the same period.
Calculate R.M.M. from isotopic composition.
Exposition ? definition of a group.
Q/A: examples of elements of the same group.
Supervised practice involving calculation of RMM from isotopic composition.
Periodic table.
text book
K.L.B. BOOK IIP. 9
K.L.B. BOOK IIPP. 11-13
3 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Positive ions and ion formation.
By the end of the lesson, the learner should be able to:
To define an ion and a cation.
Teacher gives examples of stable atoms.
Guided discovery that metals need to lose one, two or three electrons to attain stability.
Examples of positive ions.

text book
K.L.B. BOOK IIPP 14-15
3 5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Positive ions representation.
By the end of the lesson, the learner should be able to:
To represent formation of positive ions symbolically.
Diagrammatic representation of cations.
Chart  ion model.
K.L.B. BOOK IIP 16
4 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Negative ions and ion formation.
By the end of the lesson, the learner should be able to:
To define an anion.
To describe formation of negative ions symbolically.
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions.
Diagrammatic representation of anions.
Chart  ion model.
K.L.B. BOOK IIP 17
4 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Negative ions and ion formation.
Valencies of metals.
By the end of the lesson, the learner should be able to:
To define an anion.
To describe formation of negative ions symbolically.
Recall valencies of metals among the first twenty elements in the periodic table.
Teacher gives examples of stable atoms.
Guided discovery of formation of negative ions.
Diagrammatic representation of anions.

Q/A to review previous lesson;
Exposition;
Guided discovery.
Chart  ion model.
Periodic table.
K.L.B. BOOK IIP 17
4 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencie of non-metals.
By the end of the lesson, the learner should be able to:
Recall valencies of non-metals among the first twenty elements in the periodic table.
Q/A to review previous lesson;
Exposition;
Guided discovery.
Periodic table.
K.L.B. BOOK IIP 17
4 5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Valencies of radicals.
By the end of the lesson, the learner should be able to:
Define a radical.
Recall the valencies of common radicals.
Exposition ? teacher defines a radical, gives examples of radicals and exposes their valencies.
Students draw a table of radicals and their valencies.
text book
K.L.B. BOOK IIP 18
5 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Oxidation number.
By the end of the lesson, the learner should be able to:
Define oxidation number.
Predict oxidation numbers from position of elements in the periodic table.
Q/A: Valencies.
Expose oxidation numbers of common ions.
Students complete a table of ions and their oxidation numbers.
The periodic table.
K.L.B. BOOK IIvP 18
5 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Electronic configuration, ion formed, valency and oxidation number
Chemical formulae of compounds. - Elements of equal valencies.
By the end of the lesson, the learner should be able to:
Relate electronic configuration, ion formed, valency and oxidation number of different elements.
To derive the formulae of some compounds involving elements of equal valencies.
Written exercise;
Exercise review.
Discuss formation of compounds such as NaCl, MgO.
text book
K.L.B. BOOK IIP 18
K.L.B. BOOK IIPP 19-20
5 4
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of unequal valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of unequal valencies.
Discuss formation of compounds such as MgCl2
Al (NO3)3
text book
K.L.B. BOOK IIPP 19-20
5 5
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical formulae of compounds. -Elements of variable valencies.
By the end of the lesson, the learner should be able to:
To derive the formulae of some compounds involving elements of variable valencies.
Discuss formation of compounds such as
-Copper (I) Oxide.
-Copper (II) Oxide.
-Iron (II) Sulphate.
-Iron (III) Sulphate.
text book
K.L.B. BOOK IIP 20
6 1
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Chemical equations.
By the end of the lesson, the learner should be able to:
To identify components of chemical equations.
Review word equations;
Exposition of new concepts with probing questions;
Brief discussion.
text book
K.L.B. BOOK IIPP 21-23
6 2-3
THE STRUCTURE OF THE ATOM & THE PERIODIC TABLE
Balanced chemical equations.
Balanced chemical equations.(contd)
By the end of the lesson, the learner should be able to:
To balance chemical equations correctly.
Exposition;
Supervised practice.
Supervised practice;
Written exercise.
text book
K.L.B. BOOK IIPP 24-25
K.L.B. BOOK IIPP 25-8
6 4
CHEMICAL FAMILIES
Alkali metals. Atomic and ionic radii of alkali metals
By the end of the lesson, the learner should be able to:





Identify alkali metals.
State changes in atomic and ionic radii of alkali metals.

Q/A to reviews elements of group I and their electronic configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Discussion & making deductions from the table.
The periodic
K.L.B. BOOK IIPP 28-29
6 5
CHEMICAL FAMILIES
Ionisation energy of alkali metals.
By the end of the lesson, the learner should be able to:
State changes in number of energy levels and ionisation energy of alkali metals.
Examine a table of elements, number of energy levels and their ionization energy.
Discuss the trend deduced from the table.
text book
K.L.B. BOOK II
7

Midterm

8 1
CHEMICAL FAMILIES
Physical properties of alkali metals.
By the end of the lesson, the learner should be able to:
State and explain trends in physical properties of alkali metals.
Examine a table showing comparative physical properties of Li, Na, and K.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion on physical properties of alkali metals.

Chart ? comparative properties of Li, Na, K.
K.L.B. BOOK IIPP 30-31
8 2-3
CHEMICAL FAMILIES
Chemical properties of alkali metals.
Reaction of alkali metals with chlorine gas.
By the end of the lesson, the learner should be able to:
To describe reaction of alkali metals with water.
To write balanced equations for reaction of alkali metals with chlorine gas.
Q/A: Review reaction of metals with water.
Writing down chemical equations for the reactions.
Deduce and discuss the order of reactivity down the group.

Teacher demonstration- reaction of sodium with chlorine in a fume chamber.
Q/A: Students to predict a similar reaction between potassium and chlorine.
Word and balanced chemical equations for various reactions.

text book
Sodium, chlorine.
K.L.B. BOOK IIP. 32
K.L.B. BOOK IIP. 33
8 4
CHEMICAL FAMILIES
Compounds of alkali metals.
By the end of the lesson, the learner should be able to:
Write chemical formulae for compounds of alkali metals.
Explain formation of hydroxides, oxides and chlorides of alkali metals.
Exercise: Completing a table of hydroxides, oxides and chlorides of alkali metals.
Discuss combination of ions of alkali metals with anions.
text book
K.L.B. BOOK II pp 33
8 5
CHEMICAL FAMILIES
Uses of alkali metals.
By the end of the lesson, the learner should be able to:
State uses of alkali metals.
Descriptive approach: Teacher elucidates uses of alkali metals.
text book
K.L.B. BOOK II pp 34
9 1
CHEMICAL FAMILIES
Alkaline Earth metals Atomic and ionic radii of alkaline earth metals.
By the end of the lesson, the learner should be able to:
Identify alkaline earth metals.

State changes in atomic and ionic radii of alkaline earth metals.
Q/A: Elements of group I and their electron configuration.
Examine a table of elements, their symbols and atomic & ionic radii.
Make deductions from the table.
Some alkaline earth metals.
K.L.B. BOOK II pp 34
9 2-3
CHEMICAL FAMILIES
Physical properties of alkaline earth metals.
Electrical properties of alkaline earth metals.
By the end of the lesson, the learner should be able to:
State and explain trends in physical properties of alkaline earth metals.
To describe electrical properties of alkaline earth metals.
Examine a table showing comparative physical properties of Be, Mg, Ca.
Q/A: Teacher asks probing questions as students refer to the table for answers.
Detailed discussion of physical properties of alkaline earth metals.

Teacher demonstration: -
To show alkaline metals are good conductors of electric charge.
Some alkaline earth metals.
K.L.B. BOOK II P. 35
K.L.B. BOOK IIP. 37
9 4
STRUCTURE & BONDING
Chemical bonds. Ionic bond.
Ionic bond representation.
By the end of the lesson, the learner should be able to:
Describe role of valence electrons in determining chemical bonding.


Explain formation of ionic bonding.
Q/A: Review valence electrons of atoms of elements in groups I, II, III, VII and VIII.
Q/A: Review group I and group VII elements.
Discuss formation of ionic bond.
text book
Chart- dot and cross diagrams.
Models for bonding.
K.L.B. BOOK IIP54




PP 57-58
9 5
STRUCTURE & BONDING
Grant ionic structures.
Physical properties of ionic compounds.
By the end of the lesson, the learner should be able to:
Describe the crystalline ionic compound.
Give examples of ionic substances.
Discuss the group ionic structures of NaCl.
Teacher gives examples of other ionic substances: KNO3, potassium bromide, Ca (NO3)2, sodium iodide.
Giant sodium chloride model.
text book
K.L.B. BOOK II PP 56-58
10 1
STRUCTURE & BONDING
Covalent bond.
Co-ordinate bond.
By the end of the lesson, the learner should be able to:
Explain the formation of covalent bond
Use dot and cross diagrams to represent covalent bond.
Exposition: Shared pair of electrons in a hydrogen molecule, H2O, NH3, Cl2, and CO2.
Drawing of dot-and-cross diagrams of covalent bonds.
text book
K.L.B. BOOK II PP 60-63
10 2-3
STRUCTURE & BONDING
Molecular structure.
Trend in physical properties of molecular structures.
Giant atomic structure in diamond.
Giant atomic structure in graphite.
Metallic bond. Uses of some metals.
By the end of the lesson, the learner should be able to:
To describe the molecular structure.
To give examples of substance exhibiting molecular structure
To describe giant atomic structure in graphite.
To state uses of graphite.
Discussion ? To explain formation of the giant structure and give examples of substance exhibiting molecular structure.
Diagrammatic representation of graphite.

Discuss uses of graphite.
text book
Sugar, naphthalene, iodine rhombic sulphur.
Diagrams in textbooks.
Diagrams in textbooks.
text book
K.L.B. BOOK IIP 65
K.L.B. BOOK II pp 69
10 4
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Physical properties of elements in periods.
By the end of the lesson, the learner should be able to:




To compare electrical conductivity of elements in period 3
Group experiments- Construct electrical circuits incorporating a magnesium ribbon, then aluminum foil, then sulphur in turns.
The brightness of the bulb is noted in each case.
Discuss the observations in terms of delocalised electrons.
The periodic table.
K.L.B. BOOK IIP. 76
10 5
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Physical properties of elements in period 3.
Chemical properties of elements in period 3.
By the end of the lesson, the learner should be able to:
To compare other physical properties of elements across period 3.
Analyse comparative physical properties presented in form of a table.
Explain the trend in the physical properties given.
The periodic table.
K.L.B. BOOK II P. 77
11 1
PROPERTIES AND TRENDS ACROSS PERIOD THREE
Chemical properties of elements in the third period.
Oxides of period 3 elements.
By the end of the lesson, the learner should be able to:
To compare reactions of elements in period 3 with water
Q/A: Review reaction of sodium, Mg, chlorine, with water.
Infer that sodium is most reactive metal; non-metals do not react with water.
The periodic table.
K.L.B. BOOK II PP. 80-81
11 2-3
PROPERTIES AND TRENDS ACROSS PERIOD THREE
SALTS
Chlorides of period 3 elements.
Types of salts.
Solubility of salts in water.
By the end of the lesson, the learner should be able to:
To explain chemical behavior of their chlorides.
To describe hydrolysis reaction.
To test solubility of various salts in cold water/warm water.
Comparative analysis, discussion and explanation.
Class experiments- Dissolve salts in 5 cc of water.
Record the solubility in a table,
Analyse the results.
The periodic table.
text book
Sulphates, chlorides, nitrates, carbonates of various metals.



K.L.B. BOOK II PP. 77-78
K.L.B. BOOK II PP. 92-93
11 4
SALTS
Solubility of bases in water.
By the end of the lesson, the learner should be able to:
To test solubility of various bases in water.
To carry out litmus test on the resulting solutions.
Class experiments- Dissolve salts in 5cc of water.
Record the solubility in a table,
Carry out litmus tests.
Discuss the results.

Oxides, hydroxides, of various metals, litmus papers.
K.L.B. BOOK IIPP. 94-95
11 5
SALTS
Methods of preparing various salts.
Direct synthesis of a salts.
By the end of the lesson, the learner should be able to:
To describe various methods of preparing some salts.
Experimental and descriptive treatments of preparation of salts e.g. ZnSO4, CuSO4, NaCl and Pb(NO3)2.

CuO, H2SO4, HCl, NaOH, PbCO3, dil HNO3.
Iron,
Sulphur
K.L.B. BOOK II pp96
12 1
SALTS
Ionic equations.
Effects of heat on carbonates.
By the end of the lesson, the learner should be able to:
To identify spectator ions in double decomposition reactions.
To write ionic equations correctly.
Q/A: Ions present in given reactants.
Deduce the products of double decomposition reactions.
Give examples of equations.
Supervised practice.
PbNO3, MgSO4 solutions.
Various carbonates.
K.L.B. BOOK II
12 2-3
SALTS
Effects of heat on nitrates.
Effects of heat on sulphates.
Hygroscopy, Deliquescence and Efflorescence.
Uses of salts.
By the end of the lesson, the learner should be able to:
To state effects of heat on nitrates.
To predict products resulting from heating metal nitrates.
To define hygroscopic deliquescent and efflorescent salts.
To give examples of hygroscopic deliquescent and efflorescent salts.
Group experiments- To investigate effects of heat on various metal nitrates.
Observe various colour changes before, during and after heating.
Write equations for the reactions.

Prepare a sample of various salts.
Expose them to the atmosphere overnight.
Students classify the salts as hygroscopic, deliquescent and / or efflorescent.
Common metal nitrates.
Common sulphates.
K.L.B. BOOK II PP. 110-111
K.L.B. BOOK II P. 114
12 4
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
Electrical conductivity.
Molten electrolytes.
By the end of the lesson, the learner should be able to:
To test for electrical conductivities of substances.
Group experiments- to identify conductors and non-conductors.
Explain the difference in (non) conductivities.
Various solids, bulb, battery, & wires.
Molten candle wax
Sugar
Sulphur
Lead oxide.
K.L.B. BOOK II PP. 118-119
12 5
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
Electrolysis.
Aqueous electrolytes. Electrodes.
By the end of the lesson, the learner should be able to:
To define electrolysis
To describe the process of electrolysis in terms of charge movement.
Descriptive approach punctuated with Q/A.
Graphite electrodes
Battery
Various aqueous solutions switch bulb.
K.L.B. BOOK II
13 1
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
Reaction on electrodes.
By the end of the lesson, the learner should be able to:
To describe half- equation reactions at the cathode and anode
To demonstrate ?Electrolysis of molten lead (II) bromide
Observe colour changes
Explanation of half-equations and reactions at the electrodes.
Graphite electrodes
Battery
Various aqueous solutions switch.
K.L.B. BOOK II PP.126-127
13 2-3
EFFECTS OF AN ELECTRIC CURRENT ON SUBSTANCES.
CARBON AND SOME OF ITS COMPOUNDS.
Binary electrolyte.
Application of electrolysis.
Electroplating.
Allotropy.
Physical and chemical properties of diamond, graphite and amorphous carbon
By the end of the lesson, the learner should be able to:
To define a binary electrolyte.
To state the products of a binary electrolyte.
Define allotropes and allotropy.
Identify allotropes of carbon.
Represent diamond and graphite diagrammatically.
Completing a table of electrolysis of binary electrolytes.
Teacher exposes new terms.
Review covalent bond.
Discuss boding in diamond and graphite.
text book
Silver nitrate
Iron nail
Complete circuit battery.
text book
Charcoal, graphite.
K.L.B. BOOK II P.127
K.L.B. BOOK II PP. 131-133
13 4
CARBON AND SOME OF ITS COMPOUNDS.
Burning carbon and oxygen.
Reduction properties of carbon.
By the end of the lesson, the learner should be able to:
Describe reaction of carbon with oxygen.
Teacher demonstration- Prepare oxygen and pass dry oxygen into a tube containing carbon. Heat the carbon. Observe effects on limewater.
Carbon, limewater, tube, limewater stand& Bunsen burner.
CuO, pounded charcoal, Bunsen burner& bottle top
K.L.B. BOOK II PP. 134-135
13 5
CARBON AND SOME OF ITS COMPOUNDS.
Reaction of carbon with acids. Preparation of CO2.
Properties of CO2.
By the end of the lesson, the learner should be able to:
Describe reaction of carbon with acids.




Prepare CO2 in the lab.
Teacher demonstration- reaction of carbon with hot conc HNO3.
Write balanced equations for the reaction.

Review effects of heat on carbonates.
Group experiments/teacher demonstration- preparation of CO2.
Conc. HNO3, limewater.
Lime water,
Magnesium ribbon,
Universal indicator,
lit candle.
K.L.B. BOOK II P.126
14 1
CARBON AND SOME OF ITS COMPOUNDS.
Chemical equations for reactions involving CO2.
By the end of the lesson, the learner should be able to:
Write balanced CO2.
Give examples of reactions. Write corresponding balanced chemical equations.
text book
K.L.B. BOOK II PP.139-140
14 2-3
CARBON AND SOME OF ITS COMPOUNDS.
Uses of CO2.
Carbon monoxide lab preparation.
Chemical properties of carbon monoxide.
Carbonates and hydrogen carbonates.
Heating carbonates and hydrogen carbonates.
By the end of the lesson, the learner should be able to:
State uses of CO2
To write chemical equations for reactions of carbonates and hydrogen carbonates with acids.
Discuss briefly the uses of CO2.
Discuss the observations above.
Write chemical equations for the reactions.
text book
K.L.B. BOOK II PP.140-1
14 4
CARBON AND SOME OF ITS COMPOUNDS.
Extraction of sodium carbonate from trona.
Solvay process of preparing sodium carbonate.
By the end of the lesson, the learner should be able to:
To draw schematic diagram for extraction of sodium carbonates.
Discuss each step of the process.
Write relevant equations.
text book
text book, chart
K.L.B. BOOK II PP. 153-157
14 5
CARBON AND SOME OF ITS COMPOUNDS.
Importance of carbon in nature. & its effects on the environment.
By the end of the lesson, the learner should be able to:
To discuss: - Importance of carbon in nature.
&
Effects of carbon on the environment.
Discuss the carbon cycle and processes that increase/ reduce amount of CO2 in the air.
Uses of CO2 in soft drinks and fire extinguishers.
text book
K.L.B. BOOK II PP.157-158

Your Name Comes Here


Download

Feedback