Home






SCHEME OF WORK
INTEGRATED SCIENCE
Grade 9 2025
TERM I
School


To enable/disable signing area for H.O.D & Principal, click here to update signature status on your profile.




To enable/disable showing Teachers name and TSC Number, click here to update teacher details status on your profile.












Did you know that you can edit this scheme? Just click on the part you want to edit!!! (Shift+Enter creates a new line)


WK LSN STRAND SUB-STRAND LESSON LEARNING OUTCOMES LEARNING EXPERIENCES KEY INQUIRY QUESTIONS LEARNING RESOURCES ASSESSMENT METHODS REFLECTION
2 2
Mixtures, Elements and Compounds
Water Hardness - Hard and soft water
By the end of the lesson, the learner should be able to:

- Compare lathering abilities of different water samples
- Test water samples with soap
- Classify water as hard or soft
- Test lathering ability of water samples
- Observe formation of lather
- Group water samples based on lathering
How is the lathering ability of water related to hardness?
- KLB Integrated Science pg. 29
- Water samples
- Liquid soap
- Test tubes with corks
- Droppers
- Internet access
- Reference books
- Observation - Oral questions - Written reports
2 3
Mixtures, Elements and Compounds
Water Hardness - Hard and soft water
By the end of the lesson, the learner should be able to:

- Distinguish between temporary and permanent hardness
- Identify the compounds that cause hardness
- Show interest in types of water hardness
- Discuss types of water hardness
- Identify compounds causing hardness
- Present findings to class
What is the difference between temporary and permanent hardness?
- KLB Integrated Science pg. 30
- Internet access
- Reference books
- Hard water samples
- Charts
- Observation - Oral questions - Written assignments
2 4
Mixtures, Elements and Compounds
Water Hardness - Hard and soft water
Water Hardness - Methods of softening hard water
By the end of the lesson, the learner should be able to:

- Outline disadvantages of hard water
- Explain problems caused by hard water
- Appreciate the importance of understanding water hardness
- Research disadvantages of hard water
- Discuss effects on soap usage and appliances
- Present findings to class
What problems are associated with hard water?
- KLB Integrated Science pg. 31
- Internet access
- Reference books
- Scaled kettle elements
- KLB Integrated Science pg. 32
- Charts
- Observation - Oral questions - Written assignments
2 5
Mixtures, Elements and Compounds
Water Hardness - Methods of softening hard water
By the end of the lesson, the learner should be able to:

- Soften hard water by boiling
- Test the effectiveness of boiling
- Show interest in water treatment
- Boil samples of hard water
- Test water before and after boiling
- Compare results
How effective is boiling in softening hard water?
- KLB Integrated Science pg. 32
- Calcium hydrogen carbonate solution
- Soap solution
- Heat source
- Test tubes
- KLB Integrated Science pg. 33
- Sodium carbonate
- Filter paper and funnel
- Observation - Oral questions - Written reports
3 1
Mixtures, Elements and Compounds
Water Hardness - Methods of softening hard water
By the end of the lesson, the learner should be able to:

- Soften hard water by distillation
- Test the effectiveness of distillation
- Show interest in water treatment
- Set up distillation apparatus
- Distill hard water samples
- Test water before and after distillation
How effective is distillation in softening hard water?
- KLB Integrated Science pg. 34
- Round-bottomed flask
- Liebig condenser
- Heat source
- Hard water samples
- KLB Integrated Science pg. 35
- Previous experimental results
- Reference books
- Internet access
- Observation - Oral questions - Written reports
3 2
Mixtures, Elements and Compounds
Living Things and Their Environment
Water Hardness - Review and assessment
Nutrition in plants - Parts of a leaf
By the end of the lesson, the learner should be able to:

- Summarize key concepts about water hardness
- Attempt questions on water hardness
- Show confidence in understanding water hardness
- Review key concepts
- Answer revision questions
- Discuss solutions to problems
Why is understanding water hardness important in daily life?
- KLB Integrated Science pg. 36
- Previous notes
- Assessment questions
- Reference books
- Textbooks (KLB Integrated Science pg. 64)
- Hand lens
- Variety of fresh leaves
- Labelled charts of a leaf
- Written test - Observation - Oral questions
3 3
Living Things and Their Environment
Nutrition in plants - Internal structure of a leaf
Nutrition in plants - Functions of leaf parts
By the end of the lesson, the learner should be able to:

- Identify the internal structures of a leaf
- Draw and label the internal structure of a leaf
- Show interest in the internal structure of the leaf
- Observe prepared slides of transverse sections of a leaf under a light microscope
- Identify various structures in the sections observed
- Draw and label the internal structure of the leaf
How does the internal structure of a leaf relate to its function?
- Textbooks (KLB Integrated Science pg. 65)
- Prepared slides of leaf sections
- Light microscope
- Charts of leaf TS
- Textbooks (KLB Integrated Science pg. 66)
- Digital resources
- Charts showing leaf structures
- Drawing skills - Observation checklist - Written questions
3 4
Living Things and Their Environment
Nutrition in plants - Adaptations of the leaf to photosynthesis
Nutrition in plants - Structure and function of chloroplast
By the end of the lesson, the learner should be able to:

- Explain adaptations of the leaf to photosynthesis
- Relate leaf adaptations to their functions
- Appreciate how adaptations enhance photosynthesis
- Search Internet or offline digital content for information on adaptations of the leaf to photosynthesis
- Discuss how leaf features maximize photosynthesis
- Share findings with peers
How are leaves adapted to carry out photosynthesis efficiently?
- Textbooks (KLB Integrated Science pg. 67)
- Digital resources
- Wall charts on leaf adaptations
- Textbooks (KLB Integrated Science pg. 68)
- Charts of chloroplast structure
- Oral questions - Written assessment - Observation
3 5
Living Things and Their Environment
Nutrition in plants - Process of photosynthesis
Nutrition in plants - Light and dark reactions
By the end of the lesson, the learner should be able to:

- Explain the process of photosynthesis
- Identify raw materials and products of photosynthesis
- Appreciate the importance of photosynthesis
- Discuss pictorial summaries of photosynthesis
- Describe the light and dark stages of photosynthesis
- Discuss raw materials and their sources
What happens during the process of photosynthesis?
- Textbooks (KLB Integrated Science pg. 69)
- Digital resources
- Charts on photosynthesis
- Textbooks (KLB Integrated Science pg. 70)
- Charts on photosynthesis stages
- Written test - Oral questions - Diagrams
4 1
Living Things and Their Environment
Nutrition in plants - Products of photosynthesis
Nutrition in plants - Gas produced during photosynthesis
By the end of the lesson, the learner should be able to:

- Identify products of photosynthesis
- Explain how products are formed and stored
- Appreciate the value of photosynthetic products
- Discuss the products of photosynthesis using reference materials
- Explain how each organic food substance is produced and stored
- Make notes on findings
What are the products of photosynthesis and how are they important?
- Textbooks (KLB Integrated Science pg. 71)
- Charts on photosynthesis
- Reference books
- Textbooks (KLB Integrated Science pg. 72)
- Water plants (Elodea)
- Test tubes, beakers
- Sodium hydrogen carbonate
- Written test - Oral assessment - Observation
4 2
Living Things and Their Environment
Nutrition in plants - Testing for starch in a leaf
Nutrition in plants - Conditions necessary for photosynthesis
By the end of the lesson, the learner should be able to:

- Describe the test for starch in a leaf
- Perform the starch test on a leaf
- Show interest in experimental procedures
- Take a green leaf exposed to light for 5 hours
- Follow the procedure for testing starch in a leaf
- Observe and record results
How can we test for the presence of starch in a leaf?
- Textbooks (KLB Integrated Science pg. 73)
- Fresh leaves
- Iodine solution
- Methylated spirit, hot water
- Textbooks (KLB Integrated Science pg. 74)
- Digital resources
- Reference books
- Practical skills - Written reports - Observation
4 3
Living Things and Their Environment
Nutrition in plants - Investigating light in photosynthesis
Nutrition in plants - Investigating carbon(IV) oxide in photosynthesis
By the end of the lesson, the learner should be able to:

- Investigate the necessity of light in photosynthesis
- Explain why light is essential for photosynthesis
- Show experimental skills in investigating photosynthesis
- Cover one leaf of a potted plant with light-proof material
- Place plant in dark for 48 hours then in light for 2-3 hours
- Test covered and uncovered leaves for starch
Why is light necessary for photosynthesis?
- Textbooks (KLB Integrated Science pg. 75)
- Potted plant
- Light-proof material
- Iodine solution
- Textbooks (KLB Integrated Science pg. 76)
- Conical flask, cork
- Sodium hydroxide pellets
- Practical skills - Written reports - Observation
4 4
Living Things and Their Environment
Nutrition in plants - Investigating chlorophyll in photosynthesis
Nutrition in plants - Investigating water in photosynthesis
By the end of the lesson, the learner should be able to:

- Investigate the necessity of chlorophyll in photosynthesis
- Explain the role of chlorophyll in photosynthesis
- Show interest in experimental approach
- Use a plant with variegated leaves
- Expose to light after destarching
- Test the leaf for starch
- Observe distribution of starch in green and non-green parts
Why is chlorophyll necessary for photosynthesis?
- Textbooks (KLB Integrated Science pg. 77)
- Plant with variegated leaves
- Iodine solution
- Methylated spirit
- Textbooks (KLB Integrated Science pg. 78)
- Photographs of plants under different water conditions
- Digital resources
- Practical skills - Written reports - Observation
4 5
Living Things and Their Environment
Nutrition in plants - Importance of photosynthesis
Nutrition in animals - Modes of nutrition
By the end of the lesson, the learner should be able to:

- Explain the importance of photosynthesis in nature
- Describe how photosynthetic products support life
- Appreciate the value of photosynthesis in ecosystems
- Discuss the importance of photosynthesis under various headings
- Explain the significance of products of photosynthesis
- Discuss environmental importance of photosynthesis
Why is photosynthesis important in nature?
- Textbooks (KLB Integrated Science pg. 79)
- Digital resources
- Reference books
- Textbooks (KLB Integrated Science pg. 80)
- Charts on animal nutrition
- Written assessment - Oral questions - Group presentations
5 1
Living Things and Their Environment
Nutrition in animals - Dentition in animals
Nutrition in animals - Types and structure of teeth
By the end of the lesson, the learner should be able to:

- Define dentition
- Differentiate between homodont and heterodont dentition
- Show interest in animal dentition
- Observe specimens or models of different types of teeth
- Identify homodont and heterodont dentition
- Draw and label diagrams of different teeth types
What is dentition?
- Textbooks (KLB Integrated Science pg. 81)
- Models of animal teeth
- Digital resources
- Charts of teeth
- Textbooks (KLB Integrated Science pg. 82)
- Models of teeth
- Drawings - Written questions - Oral assessment
5 2
Living Things and Their Environment
Nutrition in animals - Functions of different teeth
Nutrition in animals - Classification based on dentition
By the end of the lesson, the learner should be able to:

- Describe functions of different types of teeth
- Relate teeth structure to their functions
- Show interest in adaptations of teeth
- Discuss functions of teeth using specimens or models
- Identify adaptations of teeth to their functions
- Share findings with peers
How do the different types of teeth function during feeding?
- Textbooks (KLB Integrated Science pg. 83)
- Models of teeth
- Digital resources
- Charts
- Textbooks (KLB Integrated Science pg. 84)
- Specimens or models of animal jaws
- Written assessment - Oral questions - Observation
5 3
Living Things and Their Environment
Nutrition in animals - Herbivores, carnivores, omnivores
Nutrition in animals - Digestive system in humans
By the end of the lesson, the learner should be able to:

- Identify dentition of herbivores, carnivores and omnivores
- Explain adaptations of teeth to different feeding habits
- Show interest in relationship between dentition and diet
- Study jaws of herbivores, carnivores and omnivores
- Identify adaptations of teeth to feeding habits
- Discuss dental formula of different animal groups
How does dentition reflect the feeding habits of animals?
- Textbooks (KLB Integrated Science pg. 85)
- Models or specimens of animal jaws
- Digital resources
- Charts
- Textbooks (KLB Integrated Science pg. 86)
- Charts of digestive system
- Models
- Written assessment - Oral questions - Practical skills
5 4
Living Things and Their Environment
Nutrition in animals - Process of digestion
Nutrition in animals - Absorption and assimilation
By the end of the lesson, the learner should be able to:

- Explain the process of digestion along the alimentary canal
- Describe the role of digestive juices and enzymes
- Show interest in the digestive process
- Search for information on digestion in the alimentary canal
- Discuss digestion in the mouth, stomach, duodenum and ileum
- Watch animations on the digestive process
How does the process of digestion occur?
- Textbooks (KLB Integrated Science pg. 87)
- Digital resources
- Charts of digestive process
- Textbooks (KLB Integrated Science pg. 88)
- Charts of villi structure
- Written assessment - Oral questions - Observation
5 5
Living Things and Their Environment
Reproduction in plants - Functions of parts of a flower
Reproduction in plants - Pollination
By the end of the lesson, the learner should be able to:

- Identify parts of a flower
- Describe functions of flower parts
- Show interest in flower structure
- Collect and examine suitable flowers
- Identify calyx, corolla, pistil, stamen
- Discuss functions of each part
What are the different parts of a flower and their functions?
- Textbooks (KLB Integrated Science pg. 86)
- Fresh flowers
- Hand lens
- Charts of flower structure
- Textbooks (KLB Integrated Science pg. 87)
- Digital resources
- Charts on pollination
- Practical skills - Drawings - Written assessment
6 1
Living Things and Their Environment
Reproduction in plants - Adaptations to insect pollination
Reproduction in plants - Adaptations to wind pollination
By the end of the lesson, the learner should be able to:

- Identify features of insect-pollinated flowers
- Explain adaptations of flowers to insect pollination
- Show interest in flower adaptations
- Examine an insect-pollinated flower
- Record color, scent, size of flower
- Discuss adaptations to insect pollination
How are flowers adapted to insect pollination?
- Textbooks (KLB Integrated Science pg. 88)
- Insect-pollinated flowers
- Hand lens
- Charts
- Textbooks (KLB Integrated Science pg. 94)
- Wind-pollinated flowers (grass/maize)
- Practical skills - Written assessment - Oral questions
6 2
Living Things and Their Environment
Reproduction in plants - Field observation of pollination
Reproduction in plants - Fertilization in flowering plants
By the end of the lesson, the learner should be able to:

- Observe pollinating agents in action
- Identify different types of pollinating agents
- Show interest in natural pollination processes
- Survey different areas to identify flower types
- Observe organisms visiting flowers
- Record observations on pollinating agents
What organisms act as pollinating agents?
- Textbooks (KLB Integrated Science pg. 95)
- Flowers in school compound
- Hand lens
- Camera/smartphone
- Textbooks (KLB Integrated Science pg. 96)
- Digital resources
- Charts on plant fertilization
- Field observation skills - Written reports - Practical assessment
6 3
Living Things and Their Environment
Reproduction in plants - Double fertilization
Reproduction in plants - Fruit formation
By the end of the lesson, the learner should be able to:

- Explain the process of double fertilization
- Describe formation of zygote and endosperm
- Appreciate the uniqueness of flowering plant reproduction
- Search for animations on double fertilization
- Discuss the fusion of nuclei in the embryo sac
- Make a model of double fertilization
What happens during double fertilization?
- Textbooks (KLB Integrated Science pg. 97)
- Digital resources
- Charts on double fertilization
- Textbooks (KLB Integrated Science pg. 98)
- Various fruits
- Charts
- Model making - Written assessment - Oral questions
6 4
Living Things and Their Environment
Reproduction in plants - Types of fruits
Reproduction in plants - Fruit and seed dispersal
By the end of the lesson, the learner should be able to:

- Classify fruits based on structure
- Differentiate between succulent and dry fruits
- Show interest in fruit diversity
- Collect various fruits and seeds
- Group fruits into dry and succulent types
- Observe internal features of different fruits
How are fruits classified?
- Textbooks (KLB Integrated Science pg. 99)
- Various fruits
- Knife/scalpel
- Specimen dishes
- Textbooks (KLB Integrated Science pg. 102)
- Various fruits and seeds
- Hand lens
- Practical skills - Written assessment - Classification charts
6 5
Living Things and Their Environment
Reproduction in plants - Animals as dispersal agents
By the end of the lesson, the learner should be able to:

- Identify fruits dispersed by animals
- Explain adaptations for animal dispersal
- Show interest in plant-animal interactions
- Observe fruits adapted for animal dispersal
- Identify hooks, edible parts, and other adaptations
- Discuss the role of animals in seed dispersal
How are fruits adapted for dispersal by animals?
- Textbooks (KLB Integrated Science pg. 106)
- Fruits with hooks (black jack)
- Succulent fruits
- Hand lens
- Practical skills - Written assessment - Observation
7 1
Living Things and Their Environment
Reproduction in plants - Water as a dispersal agent
Reproduction in plants - Wind as a dispersal agent
By the end of the lesson, the learner should be able to:

- Identify fruits dispersed by water
- Explain adaptations for water dispersal
- Appreciate plant-environment interactions
- Observe fruits adapted for water dispersal
- Identify buoyancy adaptations
- Discuss features of water-dispersed fruits
How are fruits adapted for dispersal by water?
- Textbooks (KLB Integrated Science pg. 107)
- Coconut fruit if available
- Pictures of water-dispersed fruits
- Digital resources
- Textbooks (KLB Integrated Science pg. 108)
- Wind-dispersed fruits/seeds
- Hand lens
- Written assessment - Oral questions - Observation
7 2
Living Things and Their Environment
Reproduction in plants - Self-dispersal mechanism
Reproduction in plants - Importance of dispersal
By the end of the lesson, the learner should be able to:

- Describe explosive dispersal mechanism
- Explain adaptations for self-dispersal
- Appreciate diversity in dispersal methods
- Observe fruits with explosive dispersal
- Identify legumes and other explosive fruits
- Discuss explosive mechanism process
How do some plants disperse their seeds without external agents?
- Textbooks (KLB Integrated Science pg. 109)
- Pods of legumes
- Castor oil fruits if available
- Digital resources
- Textbooks (KLB Integrated Science pg. 110)
- Reference books
- Written assessment - Oral questions - Observation
7 3
Living Things and Their Environment
Reproduction in plants - Effect of agrochemicals
Reproduction in plants - Role of flowers in nature
By the end of the lesson, the learner should be able to:

- Explain effects of agrochemicals on pollinating agents
- Discuss impact on plant reproduction
- Show concern for environmental conservation
- Search for information on agrochemicals
- Discuss categories of agrochemicals
- Analyze effects on pollinators and plant reproduction
How do agrochemicals affect pollination and reproduction in plants?
- Textbooks (KLB Integrated Science pg. 111)
- Digital resources
- Charts on agrochemicals
- Reference books
- Written assessment - Oral questions - Group discussions
7 4
Living Things and Their Environment
The interdependence of life - Components of the environment
The interdependence of life - Competition
By the end of the lesson, the learner should be able to:

- Define ecosystem, ecology and environment
- Identify biotic and abiotic components
- Show interest in interactions in ecosystems
- Study diagrams of ecosystems
- Identify living and non-living components
- Discuss relationships between organisms
What is an ecosystem?
- Textbooks (KLB Integrated Science pg. 115)
- Digital resources
- Charts of ecosystems
- Textbooks (KLB Integrated Science pg. 116)
- Reference books
- Written assessment - Oral questions - Observation
7 5
Living Things and Their Environment
The interdependence of life - Predation
The interdependence of life - Parasitism
By the end of the lesson, the learner should be able to:

- Define predation, predator and prey
- Explain adaptations of predators and prey
- Show interest in predator-prey relationships
- Search for information on predation
- Discuss adaptations of predators and prey
- Analyze predator-prey population dynamics
How does predation affect population dynamics?
- Textbooks (KLB Integrated Science pg. 117)
- Digital resources
- Videos on predation
- Textbooks (KLB Integrated Science pg. 119)
- Charts on parasitism
- Written assessment - Oral questions - Group discussions
8 1
Living Things and Their Environment
The interdependence of life - Symbiosis
The interdependence of life - Saprophytism
By the end of the lesson, the learner should be able to:

- Define symbiosis
- Describe examples of symbiotic relationships
- Appreciate mutual benefits in symbiosis
- Search for information on symbiotic relationships
- Discuss root nodules, lichens, and ox-pecker relationships
- Analyze benefits to each partner
How do organisms benefit from symbiotic relationships?
- Textbooks (KLB Integrated Science pg. 120)
- Digital resources
- Charts on symbiosis
- Textbooks (KLB Integrated Science pg. 121)
- Photographs of fungi
- Written assessment - Oral questions - Group discussions
8 2
Living Things and Their Environment
The interdependence of life - Temperature effects
The interdependence of life - Light effects
By the end of the lesson, the learner should be able to:

- Measure environmental temperature
- Explain effects of temperature on organisms
- Show interest in abiotic factors
- Suspend thermometer to measure air temperature
- Measure soil and water temperature
- Discuss effects of temperature on organisms
How does temperature affect living organisms?
- Textbooks (KLB Integrated Science pg. 122)
- Thermometers
- Water in basin
- Digital resources
- Textbooks (KLB Integrated Science pg. 123)
- Light meter if available
- Secchi disc
- Practical skills - Written assessment - Oral questions
8 3
Living Things and Their Environment
The interdependence of life - Atmospheric pressure
The interdependence of life - Humidity effects
By the end of the lesson, the learner should be able to:

- Define atmospheric pressure
- Explain effects of atmospheric pressure on organisms
- Show interest in pressure as an ecological factor
- Discuss meaning of atmospheric pressure
- Explain how pressure changes with altitude
- Analyze effects on organisms
How does atmospheric pressure affect organisms?
- Textbooks (KLB Integrated Science pg. 124)
- Digital resources
- Barometer if available
- Textbooks (KLB Integrated Science pg. 125)
- Cobalt(II) chloride paper
- Forceps
- Stopwatch
- Written assessment - Oral questions - Group discussions
8 4
Living Things and Their Environment
The interdependence of life - Wind effects
The interdependence of life - pH and salinity
By the end of the lesson, the learner should be able to:

- Define wind and explain how it is measured
- Describe effects of wind on organisms
- Show interest in wind as an ecological factor
- Discuss meaning of wind and wind parameters
- Explain effects of wind on plants and animals
- Construct simple wind measuring instruments
How does wind affect living organisms?
- Textbooks (KLB Integrated Science pg. 126)
- Digital resources
- Materials for windsock/wind vane
- Textbooks (KLB Integrated Science pg. 127)
- Universal indicator paper
- Soil and water samples
- Test tubes
- Practical skills - Written assessment - Group work
8 5
Living Things and Their Environment
The interdependence of life - Energy flow
The interdependence of life - Food chains
By the end of the lesson, the learner should be able to:

- Explain energy flow in ecosystems
- Describe trophic levels
- Appreciate energy transfer in nature
- Discuss energy flow from sun to producers and consumers
- Explain the concept of trophic levels
- Analyze energy loss between trophic levels
How does energy flow through an ecosystem?
- Textbooks (KLB Integrated Science pg. 128)
- Digital resources
- Charts on energy flow
- Textbooks (KLB Integrated Science pg. 129)
- Charts on food chains
- Written assessment - Oral questions - Group discussions
9 1
Living Things and Their Environment
The interdependence of life - Food webs
The interdependence of life - National Parks ecosystem
By the end of the lesson, the learner should be able to:

- Define food web
- Construct food webs from food chains
- Appreciate complexity of feeding relationships
- Observe feeding habits of organisms
- Construct multiple food chains
- Combine food chains into food webs
How do food chains interact to form food webs?
- Textbooks (KLB Integrated Science pg. 130)
- Digital resources
- Charts on food webs
- Textbooks (KLB Integrated Science pg. 131)
- Reference books on National Parks
- Food web construction - Written assessment - Group presentations
9 2
Living Things and Their Environment
The interdependence of life - Decomposers
The interdependence of life - Human activities
By the end of the lesson, the learner should be able to:

- Describe the role of decomposers in ecosystems
- Explain nutrient cycling
- Appreciate the importance of decomposers
- Visit a compost site to observe decomposition
- Discuss the role of decomposers in nutrient cycling
- Analyze nitrogen, carbon and sulphur cycles
What role do decomposers play in an ecosystem?
- Textbooks (KLB Integrated Science pg. 132)
- Digital resources
- School compost site
- Hand lens
- Textbooks (KLB Integrated Science pg. 133)
- Reference books
- Written assessment - Practical skills - Group discussions
9 3
Force and Energy
Curved mirrors - Types of curved mirrors
By the end of the lesson, the learner should be able to:

- Identify different types of curved mirrors
- Describe curved mirror surfaces
- Show interest in curved mirrors
- Observe different reflector surfaces
- Discuss the description of concave, convex and parabolic reflectors
- Compare the surfaces of different curved mirrors
How are curved mirrors used in day-to-day life?
- KLB Integrated Science pg. 147
- Car driving mirrors
- Car headlight reflectors
- Laboratory curved mirrors
- Digital content on curved mirrors
- Digital resources
- Drawing materials
- Observation - Oral questions - Written assignments
9 4
Force and Energy
Curved mirrors - Images formed by concave and convex mirrors
By the end of the lesson, the learner should be able to:

- Define terms used in curved mirrors
- Identify parts of curved mirrors
- Show interest in terminology used in optics
- Study diagrams illustrating parts of curved mirrors
- Search the Internet and relevant print materials for meanings of optical terms
- Discuss terms used in curved mirrors
What are the key terms used in describing curved mirrors?
- KLB Integrated Science pg. 148
- Internet resources
- Digital devices
- Geometrical sets
- Curved mirrors
- KLB Integrated Science pg. 149
- Diagrams of curved mirrors
- Drawing materials
- Observation - Oral questions - Written assignments
9 5
Force and Energy
Curved mirrors - Images formed by concave and convex mirrors
Curved mirrors - Focal length
By the end of the lesson, the learner should be able to:

- Describe the principal axis of curved mirrors
- Explain the principal focus and focal plane
- Show interest in optical features
- Draw the principal axis for concave and convex mirrors
- Locate the principal focus on mirror diagrams
- Discuss the focal plane and its significance
How does the principal focus relate to image formation?
- KLB Integrated Science pg. 150
- Diagrams of curved mirrors
- Geometrical sets
- Drawing materials
- KLB Integrated Science pg. 152
- Concave mirrors
- Meter rule
- White screen
- Mirror holder
- Observation - Drawing assessment - Written assignments
10 1
Force and Energy
Curved mirrors - Position of image formed by concave mirrors
Curved mirrors - Position of image formed by convex mirrors
By the end of the lesson, the learner should be able to:

- Locate images formed by concave mirrors experimentally
- Describe image characteristics for different object positions
- Show interest in image formation
- Set up apparatus to locate images formed by concave mirrors
- Place objects at different positions relative to the mirror
- Record image characteristics for each position
How do image characteristics change with object position?
- KLB Integrated Science pg. 153
- Concave mirrors
- Mirror holders
- Meter rules
- Screens
- Candles
- KLB Integrated Science pg. 154
- Convex mirrors
- Objects
- Observation - Practical skills assessment - Written reports
10 2
Force and Energy
Curved mirrors - Rays commonly used for ray diagram construction
By the end of the lesson, the learner should be able to:

- Identify rays used in ray diagram construction
- Explain how different rays are reflected
- Show interest in ray diagram construction
- Search the Internet for information on ray behavior
- Sketch ray diagrams showing reflection of different rays
- Discuss with peers and display sketches
Which rays are most useful for locating images in ray diagrams?
- KLB Integrated Science pg. 155
- Internet resources
- Digital devices
- Manila paper
- Drawing materials
- KLB Integrated Science pg. 156
- Ruler and protractor
- Reference materials
- Observation - Drawing assessment - Oral questions
10 3
Force and Energy
Curved mirrors - Rays commonly used for ray diagram construction
By the end of the lesson, the learner should be able to:

- Construct ray diagrams for concave mirrors
- Locate images using ray diagrams
- Show interest in graphical representation
- Draw ray diagrams for different object positions
- Use ray diagrams to locate images
- Determine image characteristics from ray diagrams
How can ray diagrams be used to predict image characteristics?
- KLB Integrated Science pg. 157
- Manila paper
- Drawing materials
- Ruler and protractor
- Reference materials
- KLB Integrated Science pg. 159
- Observation - Drawing assessment - Written assignments
10 4
Force and Energy
Curved mirrors - Uses of concave mirrors
By the end of the lesson, the learner should be able to:

- Explain applications of concave mirrors
- Relate object positions to specific applications
- Show interest in practical applications
- Search for information on applications of concave mirrors
- Relate applications to image characteristics
- Present findings to class
What makes concave mirrors suitable for specific applications?
- KLB Integrated Science pg. 161
- Digital devices
- Internet connectivity
- Charts of ray diagrams
- Digital resources
- Torch with reflector
- Observation - Oral presentations - Written assignments
10 5
Force and Energy
Curved mirrors - Uses of concave mirrors
Curved mirrors - Uses of convex mirrors
By the end of the lesson, the learner should be able to:

- Explain the use of concave mirrors in astronomy
- Describe applications in dental examination
- Show interest in specialized applications
- Discuss the principle of reflection telescopes
- Explain how dental mirrors provide magnified images
- Research other specialized applications
How do concave mirrors contribute to professional fields?
- KLB Integrated Science pg. 162
- Digital resources
- Internet connectivity
- Reference materials
- KLB Integrated Science pg. 163
- Observation - Oral presentations - Written assignments
11 1
Force and Energy
Curved mirrors - Uses of convex mirrors
Curved mirrors - Review and assessment
By the end of the lesson, the learner should be able to:

- Explain the use of convex mirrors as driving mirrors
- Describe applications of parabolic reflectors
- Show interest in real-world applications
- Discuss why convex mirrors are used as side mirrors
- Explain advantages of wider field of view
- Research applications of parabolic reflectors
How do curved mirrors enhance transportation safety?
- KLB Integrated Science pg. 164
- Digital resources
- Internet connectivity
- Reference materials
- KLB Integrated Science pg. 166
- Previous notes
- Assessment questions
- Observation - Oral questions - Written assignments
11 2
Force and Energy
Waves - Generation of waves
Waves - Classification of waves
By the end of the lesson, the learner should be able to:

- Define waves in scientific terms
- Describe how waves are generated
- Show interest in wave phenomena
- Observe waves created in water
- Generate sound waves using a drum/speaker
- Discuss energy transfer through waves
What are waves and how are they generated?
- KLB Integrated Science pg. 170
- Water in a basin
- Drum
- Speaker connected to radio
- Small stones
- KLB Integrated Science pg. 172
- Slinky spring
- Rope
- Smooth surface
- Rigid support
- Observation - Oral questions - Written assignments
11 3
Force and Energy
Waves - Classification of waves
Waves - Characteristics of waves
By the end of the lesson, the learner should be able to:

- Generate transverse waves
- Describe characteristics of transverse waves
- Compare longitudinal and transverse waves
- Use a slinky spring to generate transverse waves
- Observe particle displacement direction
- Create comparison charts
How do transverse waves differ from longitudinal waves?
- KLB Integrated Science pg. 173
- Slinky spring
- Rope
- Smooth surface
- Rigid support
- KLB Integrated Science pg. 175
- Meter rule
- Chalk
- Drawing materials
- Observation - Practical skills assessment - Written assignments
11 4
Force and Energy
Waves - Characteristics of waves
Waves - Frequency and periodic time
By the end of the lesson, the learner should be able to:

- Define wavelength
- Identify crests and troughs
- Explain wave phase
- Generate waves and identify crests and troughs
- Measure wavelength
- Identify points in phase
How is wavelength measured and what is its significance?
- KLB Integrated Science pg. 177
- Slinky spring
- Meter rule
- Chalk
- Drawing materials
- KLB Integrated Science pg. 180
- Stopwatch
- Observation - Measurement skills assessment - Written assignments
11 5
Force and Energy
Waves - Frequency and periodic time
By the end of the lesson, the learner should be able to:

- Solve problems involving frequency and periodic time
- Draw displacement-time graphs
- Show interest in wave calculations
- Practice solving problems with frequency and period
- Draw and interpret wave graphs
- Discuss the significance of frequency in real applications
How does frequency affect wave behavior and applications?
- KLB Integrated Science pg. 181
- Calculators
- Graph paper
- Reference materials
- Problem sets
- Observation - Problem-solving assessment - Written assignments

Your Name Comes Here


Download

Feedback